///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2012 The Bochs Project // Copyright (C) 2017 Google Inc. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// /* * flags functions */ #include "qemu/osdep.h" #include "panic.h" #include "cpu.h" #include "x86_flags.h" #include "x86.h" /* * The algorithms here are similar to those in Bochs. After an ALU * operation, CC_DST can be used to compute ZF, SF and PF, whereas * CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the * XOR of the value computed from CC_DST and the value found in bits 7 and 2 * of CC_SRC; this way the same logic can be used to compute the flags * both before and after an ALU operation. * * Compared to the TCG CC_OP codes, this avoids conditionals when converting * to and from the RFLAGS representation. */ #define LF_SIGN_BIT (TARGET_LONG_BITS - 1) #define LF_BIT_PD (2) /* lazy Parity Delta, same bit as PF */ #define LF_BIT_AF (3) /* lazy Adjust flag */ #define LF_BIT_SD (7) /* lazy Sign Flag Delta, same bit as SF */ #define LF_BIT_CF (TARGET_LONG_BITS - 1) /* lazy Carry Flag */ #define LF_BIT_PO (TARGET_LONG_BITS - 2) /* lazy Partial Overflow = CF ^ OF */ #define LF_MASK_PD ((target_ulong)0x01 << LF_BIT_PD) #define LF_MASK_AF ((target_ulong)0x01 << LF_BIT_AF) #define LF_MASK_SD ((target_ulong)0x01 << LF_BIT_SD) #define LF_MASK_CF ((target_ulong)0x01 << LF_BIT_CF) #define LF_MASK_PO ((target_ulong)0x01 << LF_BIT_PO) /* ******************* */ /* OSZAPC */ /* ******************* */ /* use carries to fill in AF, PO and CF, while ensuring PD and SD are clear. * for full-word operations just clear PD and SD; for smaller operand * sizes only keep AF in the low byte and shift the carries left to * place PO and CF in the top two bits. */ #define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \ env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \ target_ulong temp = (lf_carries); \ if ((size) == TARGET_LONG_BITS) { \ temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \ } else { \ temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \ } \ env->cc_src = temp; \ } /* carries, result */ #define SET_FLAGS_OSZAPC_8(carries, result) \ SET_FLAGS_OSZAPC_SIZE(8, carries, result) #define SET_FLAGS_OSZAPC_16(carries, result) \ SET_FLAGS_OSZAPC_SIZE(16, carries, result) #define SET_FLAGS_OSZAPC_32(carries, result) \ SET_FLAGS_OSZAPC_SIZE(32, carries, result) /* ******************* */ /* OSZAP */ /* ******************* */ /* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF * did not match the high bit of lf_carries. */ #define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \ env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \ target_ulong temp = (lf_carries); \ if ((size) == TARGET_LONG_BITS) { \ temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \ } else { \ temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \ } \ target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \ env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \ } /* carries, result */ #define SET_FLAGS_OSZAP_8(carries, result) \ SET_FLAGS_OSZAP_SIZE(8, carries, result) #define SET_FLAGS_OSZAP_16(carries, result) \ SET_FLAGS_OSZAP_SIZE(16, carries, result) #define SET_FLAGS_OSZAP_32(carries, result) \ SET_FLAGS_OSZAP_SIZE(32, carries, result) void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf) { env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF); env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO); env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO); } void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2, uint32_t diff) { SET_FLAGS_OSZAPC_32(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2, uint16_t diff) { SET_FLAGS_OSZAPC_16(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2, uint8_t diff) { SET_FLAGS_OSZAPC_8(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2, uint32_t diff) { SET_FLAGS_OSZAPC_32(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2, uint16_t diff) { SET_FLAGS_OSZAPC_16(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2, uint8_t diff) { SET_FLAGS_OSZAPC_8(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2, uint32_t diff) { SET_FLAGS_OSZAP_32(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2, uint16_t diff) { SET_FLAGS_OSZAP_16(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2, uint8_t diff) { SET_FLAGS_OSZAP_8(SUB_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2, uint32_t diff) { SET_FLAGS_OSZAP_32(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2, uint16_t diff) { SET_FLAGS_OSZAP_16(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAP_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2, uint8_t diff) { SET_FLAGS_OSZAP_8(ADD_COUT_VEC(v1, v2, diff), diff); } void SET_FLAGS_OSZAPC_LOGIC32(CPUX86State *env, uint32_t v1, uint32_t v2, uint32_t diff) { SET_FLAGS_OSZAPC_32(0, diff); } void SET_FLAGS_OSZAPC_LOGIC16(CPUX86State *env, uint16_t v1, uint16_t v2, uint16_t diff) { SET_FLAGS_OSZAPC_16(0, diff); } void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2, uint8_t diff) { SET_FLAGS_OSZAPC_8(0, diff); } static inline uint32_t get_PF(CPUX86State *env) { return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P; } static inline uint32_t get_OF(CPUX86State *env) { return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O; } bool get_CF(CPUX86State *env) { return ((target_long)env->cc_src) < 0; } void set_CF(CPUX86State *env, bool val) { /* If CF changes, flip PO and CF */ target_ulong temp = -(target_ulong)val; target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF); } static inline uint32_t get_ZF(CPUX86State *env) { return env->cc_dst ? 0 : CC_Z; } static inline uint32_t get_SF(CPUX86State *env) { return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^ env->cc_src) & CC_S; } void lflags_to_rflags(CPUX86State *env) { env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O); /* rotate left by one to move carry-out bits into CF and AF */ env->eflags |= ( (env->cc_src << 1) | (env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A); env->eflags |= get_SF(env); env->eflags |= get_PF(env); env->eflags |= get_ZF(env); env->eflags |= get_OF(env); } void rflags_to_lflags(CPUX86State *env) { target_ulong cf_af, cf_xor_of; /* Leave the low byte zero so that parity is always even... */ env->cc_dst = !(env->eflags & CC_Z) << 8; /* ... and therefore cc_src always uses opposite polarity. */ env->cc_src = CC_P; env->cc_src ^= env->eflags & (CC_S | CC_P); /* rotate right by one to move CF and AF into the carry-out positions */ cf_af = env->eflags & (CC_C | CC_A); env->cc_src |= ((cf_af >> 1) | (cf_af << (TARGET_LONG_BITS - 1))); cf_xor_of = ((env->eflags & (CC_C | CC_O)) + (CC_O - CC_C)) & CC_O; env->cc_src |= -cf_xor_of & LF_MASK_PO; }