/* * low level and IOMMU backend agnostic helpers used by VFIO devices, * related to regions, interrupts, capabilities * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include "qemu/osdep.h" #include #include "system/kvm.h" #include "hw/vfio/vfio-common.h" #include "hw/vfio/pci.h" #include "hw/hw.h" #include "trace.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/units.h" #include "monitor/monitor.h" #include "vfio-helpers.h" /* * Common VFIO interrupt disable */ void vfio_disable_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, .index = index, .start = 0, .count = 0, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } static inline const char *action_to_str(int action) { switch (action) { case VFIO_IRQ_SET_ACTION_MASK: return "MASK"; case VFIO_IRQ_SET_ACTION_UNMASK: return "UNMASK"; case VFIO_IRQ_SET_ACTION_TRIGGER: return "TRIGGER"; default: return "UNKNOWN ACTION"; } } static const char *index_to_str(VFIODevice *vbasedev, int index) { if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { return NULL; } switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: return "INTX"; case VFIO_PCI_MSI_IRQ_INDEX: return "MSI"; case VFIO_PCI_MSIX_IRQ_INDEX: return "MSIX"; case VFIO_PCI_ERR_IRQ_INDEX: return "ERR"; case VFIO_PCI_REQ_IRQ_INDEX: return "REQ"; default: return NULL; } } bool vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, int action, int fd, Error **errp) { ERRP_GUARD(); g_autofree struct vfio_irq_set *irq_set = NULL; int argsz; const char *name; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; irq_set->index = index; irq_set->start = subindex; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = fd; if (!ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { return true; } error_setg_errno(errp, errno, "VFIO_DEVICE_SET_IRQS failure"); name = index_to_str(vbasedev, index); if (name) { error_prepend(errp, "%s-%d: ", name, subindex); } else { error_prepend(errp, "index %d-%d: ", index, subindex); } error_prepend(errp, "Failed to %s %s eventfd signaling for interrupt ", fd < 0 ? "tear down" : "set up", action_to_str(action)); return false; } int vfio_bitmap_alloc(VFIOBitmap *vbmap, hwaddr size) { vbmap->pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size(); vbmap->size = ROUND_UP(vbmap->pages, sizeof(__u64) * BITS_PER_BYTE) / BITS_PER_BYTE; vbmap->bitmap = g_try_malloc0(vbmap->size); if (!vbmap->bitmap) { return -ENOMEM; } return 0; } struct vfio_info_cap_header * vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) { struct vfio_info_cap_header *hdr; for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { if (hdr->id == id) { return hdr; } } return NULL; } struct vfio_info_cap_header * vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) { if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } struct vfio_info_cap_header * vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) { if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } int vfio_get_region_info(VFIODevice *vbasedev, int index, struct vfio_region_info **info) { size_t argsz = sizeof(struct vfio_region_info); *info = g_malloc0(argsz); (*info)->index = index; retry: (*info)->argsz = argsz; if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { g_free(*info); *info = NULL; return -errno; } if ((*info)->argsz > argsz) { argsz = (*info)->argsz; *info = g_realloc(*info, argsz); goto retry; } return 0; } struct vfio_info_cap_header * vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) { if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, unsigned int *avail) { struct vfio_info_cap_header *hdr; struct vfio_iommu_type1_info_dma_avail *cap; /* If the capability cannot be found, assume no DMA limiting */ hdr = vfio_get_iommu_type1_info_cap(info, VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); if (!hdr) { return false; } if (avail != NULL) { cap = (void *) hdr; *avail = cap->avail; } return true; } int vfio_kvm_device_add_fd(int fd, Error **errp) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_FILE, .attr = KVM_DEV_VFIO_FILE_ADD, .addr = (uint64_t)(unsigned long)&fd, }; if (!kvm_enabled()) { return 0; } if (vfio_kvm_device_fd < 0) { struct kvm_create_device cd = { .type = KVM_DEV_TYPE_VFIO, }; if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); return -errno; } vfio_kvm_device_fd = cd.fd; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", fd); return -errno; } #endif return 0; } int vfio_kvm_device_del_fd(int fd, Error **errp) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_FILE, .attr = KVM_DEV_VFIO_FILE_DEL, .addr = (uint64_t)(unsigned long)&fd, }; if (vfio_kvm_device_fd < 0) { error_setg(errp, "KVM VFIO device isn't created yet"); return -EINVAL; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_setg_errno(errp, errno, "Failed to remove fd %d from KVM VFIO device", fd); return -errno; } #endif return 0; } int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, uint32_t subtype, struct vfio_region_info **info) { int i; for (i = 0; i < vbasedev->num_regions; i++) { struct vfio_info_cap_header *hdr; struct vfio_region_info_cap_type *cap_type; if (vfio_get_region_info(vbasedev, i, info)) { continue; } hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); if (!hdr) { g_free(*info); continue; } cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); trace_vfio_get_dev_region(vbasedev->name, i, cap_type->type, cap_type->subtype); if (cap_type->type == type && cap_type->subtype == subtype) { return 0; } g_free(*info); } *info = NULL; return -ENODEV; } bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) { g_autofree struct vfio_region_info *info = NULL; bool ret = false; if (!vfio_get_region_info(vbasedev, region, &info)) { if (vfio_get_region_info_cap(info, cap_type)) { ret = true; } } return ret; } bool vfio_device_get_name(VFIODevice *vbasedev, Error **errp) { ERRP_GUARD(); struct stat st; if (vbasedev->fd < 0) { if (stat(vbasedev->sysfsdev, &st) < 0) { error_setg_errno(errp, errno, "no such host device"); error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->sysfsdev); return false; } /* User may specify a name, e.g: VFIO platform device */ if (!vbasedev->name) { vbasedev->name = g_path_get_basename(vbasedev->sysfsdev); } } else { if (!vbasedev->iommufd) { error_setg(errp, "Use FD passing only with iommufd backend"); return false; } /* * Give a name with fd so any function printing out vbasedev->name * will not break. */ if (!vbasedev->name) { vbasedev->name = g_strdup_printf("VFIO_FD%d", vbasedev->fd); } } return true; } void vfio_device_set_fd(VFIODevice *vbasedev, const char *str, Error **errp) { ERRP_GUARD(); int fd = monitor_fd_param(monitor_cur(), str, errp); if (fd < 0) { error_prepend(errp, "Could not parse remote object fd %s:", str); return; } vbasedev->fd = fd; } void vfio_device_init(VFIODevice *vbasedev, int type, VFIODeviceOps *ops, DeviceState *dev, bool ram_discard) { vbasedev->type = type; vbasedev->ops = ops; vbasedev->dev = dev; vbasedev->fd = -1; vbasedev->ram_block_discard_allowed = ram_discard; } int vfio_device_get_aw_bits(VFIODevice *vdev) { /* * iova_ranges is a sorted list. For old kernels that support * VFIO but not support query of iova ranges, iova_ranges is NULL, * in this case HOST_IOMMU_DEVICE_CAP_AW_BITS_MAX(64) is returned. */ GList *l = g_list_last(vdev->bcontainer->iova_ranges); if (l) { Range *range = l->data; return range_get_last_bit(range) + 1; } return HOST_IOMMU_DEVICE_CAP_AW_BITS_MAX; } bool vfio_device_is_mdev(VFIODevice *vbasedev) { g_autofree char *subsys = NULL; g_autofree char *tmp = NULL; if (!vbasedev->sysfsdev) { return false; } tmp = g_strdup_printf("%s/subsystem", vbasedev->sysfsdev); subsys = realpath(tmp, NULL); return subsys && (strcmp(subsys, "/sys/bus/mdev") == 0); } bool vfio_device_hiod_realize(VFIODevice *vbasedev, Error **errp) { HostIOMMUDevice *hiod = vbasedev->hiod; if (!hiod) { return true; } return HOST_IOMMU_DEVICE_GET_CLASS(hiod)->realize(hiod, vbasedev, errp); } VFIODevice *vfio_get_vfio_device(Object *obj) { if (object_dynamic_cast(obj, TYPE_VFIO_PCI)) { return &VFIO_PCI(obj)->vbasedev; } else { return NULL; } }