#include "kvm/kvm.h" #include "kvm/interrupt.h" #include "kvm/util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Compatibility code. Remove this when we move to tools/kvm. */ #ifndef KVM_EXIT_INTERNAL_ERROR # define KVM_EXIT_INTERNAL_ERROR 17 #endif #define DEFINE_KVM_EXIT_REASON(reason) [reason] = #reason const char *kvm_exit_reasons[] = { DEFINE_KVM_EXIT_REASON(KVM_EXIT_UNKNOWN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_EXCEPTION), DEFINE_KVM_EXIT_REASON(KVM_EXIT_IO), DEFINE_KVM_EXIT_REASON(KVM_EXIT_HYPERCALL), DEFINE_KVM_EXIT_REASON(KVM_EXIT_DEBUG), DEFINE_KVM_EXIT_REASON(KVM_EXIT_HLT), DEFINE_KVM_EXIT_REASON(KVM_EXIT_MMIO), DEFINE_KVM_EXIT_REASON(KVM_EXIT_IRQ_WINDOW_OPEN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_SHUTDOWN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_FAIL_ENTRY), DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_SET_TPR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_TPR_ACCESS), DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_SIEIC), DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_RESET), DEFINE_KVM_EXIT_REASON(KVM_EXIT_DCR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_NMI), DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTERNAL_ERROR), }; #define DEFINE_KVM_EXT(ext) \ .name = #ext, \ .code = ext struct { const char *name; int code; } kvm_req_ext[] = { { DEFINE_KVM_EXT(KVM_CAP_COALESCED_MMIO) }, { DEFINE_KVM_EXT(KVM_CAP_SET_TSS_ADDR) }, { DEFINE_KVM_EXT(KVM_CAP_PIT2) }, { DEFINE_KVM_EXT(KVM_CAP_USER_MEMORY) }, { DEFINE_KVM_EXT(KVM_CAP_IRQ_ROUTING) }, { DEFINE_KVM_EXT(KVM_CAP_IRQCHIP) }, { DEFINE_KVM_EXT(KVM_CAP_HLT) }, { DEFINE_KVM_EXT(KVM_CAP_IRQ_INJECT_STATUS) }, { DEFINE_KVM_EXT(KVM_CAP_EXT_CPUID) }, }; static inline bool host_ptr_in_ram(struct kvm *self, void *p) { return self->ram_start <= p && p < (self->ram_start + self->ram_size); } static inline uint32_t segment_to_flat(uint16_t selector, uint16_t offset) { return ((uint32_t)selector << 4) + (uint32_t) offset; } static inline void *guest_flat_to_host(struct kvm *self, unsigned long offset) { return self->ram_start + offset; } static inline void *guest_real_to_host(struct kvm *self, uint16_t selector, uint16_t offset) { unsigned long flat = segment_to_flat(selector, offset); return guest_flat_to_host(self, flat); } static bool kvm__supports_extension(struct kvm *self, unsigned int extension) { int ret; ret = ioctl(self->sys_fd, KVM_CHECK_EXTENSION, extension); if (ret < 0) return false; return ret; } static int kvm__check_extensions(struct kvm *self) { unsigned int i; for (i = 0; i < ARRAY_SIZE(kvm_req_ext); i++) { if (!kvm__supports_extension(self, kvm_req_ext[i].code)) { error("Unsuppored KVM extension detected: %s", kvm_req_ext[i].name); return (int)-i; } } return 0; } static struct kvm *kvm__new(void) { struct kvm *self = calloc(1, sizeof *self); if (!self) die("out of memory"); return self; } void kvm__delete(struct kvm *self) { free(self->ram_start); free(self); } struct kvm *kvm__init(const char *kvm_dev) { struct kvm_userspace_memory_region mem; struct kvm_pit_config pit_config = { .flags = 0, }; struct kvm *self; long page_size; int mmap_size; int ret; self = kvm__new(); self->sys_fd = open(kvm_dev, O_RDWR); if (self->sys_fd < 0) { if (errno == ENOENT) die("'%s' not found. Please make sure you have CONFIG_KVM enabled.", kvm_dev); die_perror("open"); } ret = ioctl(self->sys_fd, KVM_GET_API_VERSION, 0); if (ret != KVM_API_VERSION) die_perror("KVM_API_VERSION ioctl"); self->vm_fd = ioctl(self->sys_fd, KVM_CREATE_VM, 0); if (self->vm_fd < 0) die_perror("KVM_CREATE_VM ioctl"); if (kvm__check_extensions(self)) die("A required KVM extention is not supported by OS"); ret = ioctl(self->vm_fd, KVM_SET_TSS_ADDR, 0xfffbd000); if (ret < 0) die_perror("KVM_SET_TSS_ADDR ioctl"); ret = ioctl(self->vm_fd, KVM_CREATE_PIT2, &pit_config); if (ret < 0) die_perror("KVM_CREATE_PIT2 ioctl"); self->ram_size = 64UL * 1024UL * 1024UL; page_size = sysconf(_SC_PAGESIZE); if (posix_memalign(&self->ram_start, page_size, self->ram_size) != 0) die("out of memory"); mem = (struct kvm_userspace_memory_region) { .slot = 0, .guest_phys_addr = 0x0UL, .memory_size = self->ram_size, .userspace_addr = (unsigned long) self->ram_start, }; ret = ioctl(self->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem); if (ret < 0) die_perror("KVM_SET_USER_MEMORY_REGION ioctl"); ret = ioctl(self->vm_fd, KVM_CREATE_IRQCHIP); if (ret < 0) die_perror("KVM_CREATE_IRQCHIP ioctl"); self->vcpu_fd = ioctl(self->vm_fd, KVM_CREATE_VCPU, 0); if (self->vcpu_fd < 0) die_perror("KVM_CREATE_VCPU ioctl"); mmap_size = ioctl(self->sys_fd, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) die_perror("KVM_GET_VCPU_MMAP_SIZE ioctl"); self->kvm_run = mmap(NULL, mmap_size, PROT_READ|PROT_WRITE, MAP_SHARED, self->vcpu_fd, 0); if (self->kvm_run == MAP_FAILED) die("unable to mmap vcpu fd"); return self; } void kvm__enable_singlestep(struct kvm *self) { struct kvm_guest_debug debug = { .control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP, }; if (ioctl(self->vcpu_fd, KVM_SET_GUEST_DEBUG, &debug) < 0) warning("KVM_SET_GUEST_DEBUG failed"); } #define BOOT_LOADER_SELECTOR 0x1000 #define BOOT_LOADER_IP 0x0000 #define BOOT_LOADER_SP 0x8000 #define BOOT_CMDLINE_OFFSET 0x20000 #define BOOT_PROTOCOL_REQUIRED 0x202 #define LOAD_HIGH 0x01 static int load_flat_binary(struct kvm *self, int fd) { void *p; int nr; if (lseek(fd, 0, SEEK_SET) < 0) die_perror("lseek"); p = guest_real_to_host(self, BOOT_LOADER_SELECTOR, BOOT_LOADER_IP); while ((nr = read(fd, p, 65536)) > 0) p += nr; self->boot_selector = BOOT_LOADER_SELECTOR; self->boot_ip = BOOT_LOADER_IP; self->boot_sp = BOOT_LOADER_SP; return true; } /* * The protected mode kernel part of a modern bzImage is loaded at 1 MB by * default. */ #define BZ_KERNEL_START 0x100000UL static const char *BZIMAGE_MAGIC = "HdrS"; #define BZ_DEFAULT_SETUP_SECTS 4 static bool load_bzimage(struct kvm *self, int fd, const char *kernel_cmdline) { struct real_intr_desc intr; struct boot_params boot; unsigned long setup_sects; unsigned int intr_addr; size_t cmdline_size; ssize_t setup_size; void *p; int nr; /* * See Documentation/x86/boot.txt for details no bzImage on-disk and * memory layout. */ if (lseek(fd, 0, SEEK_SET) < 0) die_perror("lseek"); read(fd, &boot, sizeof(boot)); if (memcmp(&boot.hdr.header, BZIMAGE_MAGIC, strlen(BZIMAGE_MAGIC)) != 0) return false; if (boot.hdr.version < BOOT_PROTOCOL_REQUIRED) { warning("Too old kernel"); return false; } if (lseek(fd, 0, SEEK_SET) < 0) die_perror("lseek"); if (!boot.hdr.setup_sects) boot.hdr.setup_sects = BZ_DEFAULT_SETUP_SECTS; setup_sects = boot.hdr.setup_sects + 1; setup_size = setup_sects << 9; p = guest_real_to_host(self, BOOT_LOADER_SELECTOR, BOOT_LOADER_IP); if (read(fd, p, setup_size) != setup_size) die_perror("read"); p = guest_flat_to_host(self, BZ_KERNEL_START); while ((nr = read(fd, p, 65536)) > 0) p += nr; p = guest_flat_to_host(self, BOOT_CMDLINE_OFFSET); if (kernel_cmdline) { cmdline_size = strlen(kernel_cmdline) + 1; if (cmdline_size > boot.hdr.cmdline_size) cmdline_size = boot.hdr.cmdline_size; memset(p, 0, boot.hdr.cmdline_size); memcpy(p, kernel_cmdline, cmdline_size - 1); } #define hdr_offset(member) \ offsetof(struct boot_params, hdr) + \ offsetof(struct setup_header, member) #define guest_hdr(kvm, member) \ guest_real_to_host(kvm, \ BOOT_LOADER_SELECTOR, \ hdr_offset(member)) /* some fields in guest header have to be updated */ p = guest_hdr(self, cmd_line_ptr); *(uint32_t *)p = BOOT_CMDLINE_OFFSET; p = guest_hdr(self, type_of_loader); *(uint8_t *)p = 0xff; p = guest_hdr(self, heap_end_ptr); *(uint16_t *)p = 0xfe00; p = guest_hdr(self, loadflags); *(uint8_t *)p |= CAN_USE_HEAP; self->boot_selector = BOOT_LOADER_SELECTOR; /* * The real-mode setup code starts at offset 0x200 of a bzImage. See * Documentation/x86/boot.txt for details. */ self->boot_ip = BOOT_LOADER_IP + 0x200; self->boot_sp = BOOT_LOADER_SP; /* * Setup a *fake* real mode vector table, it has only * one real hadler which does just iret * * This is where the BIOS lives -- BDA area */ intr_addr = BIOS_INTR_NEXT(BDA_START + 0, 16); p = guest_flat_to_host(self, intr_addr); memcpy(p, intfake, intfake_end - intfake); intr = (struct real_intr_desc) { .segment = REAL_SEGMENT(intr_addr), .offset = 0, }; interrupt_table__setup(&self->interrupt_table, &intr); intr_addr = BIOS_INTR_NEXT(BDA_START + (intfake_end - intfake), 16); p = guest_flat_to_host(self, intr_addr); memcpy(p, int10, int10_end - int10); intr = (struct real_intr_desc) { .segment = REAL_SEGMENT(intr_addr), .offset = 0, }; interrupt_table__set(&self->interrupt_table, &intr, 0x10); p = guest_flat_to_host(self, 0); interrupt_table__copy(&self->interrupt_table, p, REAL_INTR_SIZE); return true; } bool kvm__load_kernel(struct kvm *kvm, const char *kernel_filename, const char *kernel_cmdline) { bool ret; int fd; fd = open(kernel_filename, O_RDONLY); if (fd < 0) die("unable to open kernel"); ret = load_bzimage(kvm, fd, kernel_cmdline); if (ret) goto found_kernel; ret = load_flat_binary(kvm, fd); if (ret) goto found_kernel; die("%s is not a valid bzImage or flat binary", kernel_filename); found_kernel: return ret; } static inline uint64_t ip_flat_to_real(struct kvm *self, uint64_t ip) { uint64_t cs = self->sregs.cs.selector; return ip - (cs << 4); } static inline bool is_in_protected_mode(struct kvm *self) { return self->sregs.cr0 & 0x01; } static inline uint64_t ip_to_flat(struct kvm *self, uint64_t ip) { uint64_t cs; /* * NOTE! We should take code segment base address into account here. * Luckily it's usually zero because Linux uses flat memory model. */ if (is_in_protected_mode(self)) return ip; cs = self->sregs.cs.selector; return ip + (cs << 4); } static inline uint32_t selector_to_base(uint16_t selector) { /* * KVM on Intel requires 'base' to be 'selector * 16' in real mode. */ return (uint32_t)selector * 16; } static struct kvm_msrs *kvm_msrs__new(size_t nmsrs) { struct kvm_msrs *self = calloc(1, sizeof(*self) + (sizeof(struct kvm_msr_entry) * nmsrs)); if (!self) die("out of memory"); return self; } #define MSR_IA32_TIME_STAMP_COUNTER 0x10 #define MSR_IA32_SYSENTER_CS 0x174 #define MSR_IA32_SYSENTER_ESP 0x175 #define MSR_IA32_SYSENTER_EIP 0x176 #define MSR_IA32_STAR 0xc0000081 #define MSR_IA32_LSTAR 0xc0000082 #define MSR_IA32_CSTAR 0xc0000083 #define MSR_IA32_FMASK 0xc0000084 #define MSR_IA32_KERNEL_GS_BASE 0xc0000102 #define KVM_MSR_ENTRY(_index, _data) \ (struct kvm_msr_entry) { .index = _index, .data = _data } static void kvm__setup_msrs(struct kvm *self) { unsigned long ndx = 0; self->msrs = kvm_msrs__new(100); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_SYSENTER_CS, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_SYSENTER_ESP, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_SYSENTER_EIP, 0x0); #ifdef CONFIG_X86_64 self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_STAR, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_CSTAR, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_KERNEL_GS_BASE, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_FMASK, 0x0); self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_LSTAR, 0x0); #endif self->msrs->entries[ndx++] = KVM_MSR_ENTRY(MSR_IA32_TIME_STAMP_COUNTER, 0x0); self->msrs->nmsrs = ndx; if (ioctl(self->vcpu_fd, KVM_SET_MSRS, self->msrs) < 0) die_perror("KVM_SET_MSRS failed"); } static void kvm__setup_fpu(struct kvm *self) { self->fpu = (struct kvm_fpu) { .fcw = 0x37f, .mxcsr = 0x1f80, }; if (ioctl(self->vcpu_fd, KVM_SET_FPU, &self->fpu) < 0) die_perror("KVM_SET_FPU failed"); } static void kvm__setup_regs(struct kvm *self) { self->regs = (struct kvm_regs) { /* We start the guest in 16-bit real mode */ .rflags = 0x0000000000000002ULL, .rip = self->boot_ip, .rsp = self->boot_sp, .rbp = self->boot_sp, }; if (self->regs.rip > USHRT_MAX) die("ip 0x%" PRIx64 " is too high for real mode", (uint64_t) self->regs.rip); if (ioctl(self->vcpu_fd, KVM_SET_REGS, &self->regs) < 0) die_perror("KVM_SET_REGS failed"); } static void kvm__setup_sregs(struct kvm *self) { if (ioctl(self->vcpu_fd, KVM_GET_SREGS, &self->sregs) < 0) die_perror("KVM_GET_SREGS failed"); self->sregs.cs.selector = self->boot_selector; self->sregs.cs.base = selector_to_base(self->boot_selector); self->sregs.ss.selector = self->boot_selector; self->sregs.ss.base = selector_to_base(self->boot_selector); self->sregs.ds.selector = self->boot_selector; self->sregs.ds.base = selector_to_base(self->boot_selector); self->sregs.es.selector = self->boot_selector; self->sregs.es.base = selector_to_base(self->boot_selector); self->sregs.fs.selector = self->boot_selector; self->sregs.fs.base = selector_to_base(self->boot_selector); self->sregs.gs.selector = self->boot_selector; self->sregs.gs.base = selector_to_base(self->boot_selector); if (ioctl(self->vcpu_fd, KVM_SET_SREGS, &self->sregs) < 0) die_perror("KVM_SET_SREGS failed"); } void kvm__reset_vcpu(struct kvm *self) { kvm__setup_sregs(self); kvm__setup_regs(self); kvm__setup_fpu(self); kvm__setup_msrs(self); } void kvm__run(struct kvm *self) { if (ioctl(self->vcpu_fd, KVM_RUN, 0) < 0) die_perror("KVM_RUN failed"); } static void print_dtable(const char *name, struct kvm_dtable *dtable) { printf(" %s %016" PRIx64 " %08" PRIx16 "\n", name, (uint64_t) dtable->base, (uint16_t) dtable->limit); } static void print_segment(const char *name, struct kvm_segment *seg) { printf(" %s %04" PRIx16 " %016" PRIx64 " %08" PRIx32 " %02" PRIx8 " %x %x %x %x %x %x %x\n", name, (uint16_t) seg->selector, (uint64_t) seg->base, (uint32_t) seg->limit, (uint8_t) seg->type, seg->present, seg->dpl, seg->db, seg->s, seg->l, seg->g, seg->avl); } void kvm__show_registers(struct kvm *self) { unsigned long cr0, cr2, cr3; unsigned long cr4, cr8; unsigned long rax, rbx, rcx; unsigned long rdx, rsi, rdi; unsigned long rbp, r8, r9; unsigned long r10, r11, r12; unsigned long r13, r14, r15; unsigned long rip, rsp; struct kvm_sregs sregs; unsigned long rflags; struct kvm_regs regs; int i; if (ioctl(self->vcpu_fd, KVM_GET_REGS, ®s) < 0) die("KVM_GET_REGS failed"); rflags = regs.rflags; rip = regs.rip; rsp = regs.rsp; rax = regs.rax; rbx = regs.rbx; rcx = regs.rcx; rdx = regs.rdx; rsi = regs.rsi; rdi = regs.rdi; rbp = regs.rbp; r8 = regs.r8; r9 = regs.r9; r10 = regs.r10; r11 = regs.r11; r12 = regs.r12; r13 = regs.r13; r14 = regs.r14; r15 = regs.r15; printf("Registers:\n"); printf(" rip: %016lx rsp: %016lx flags: %016lx\n", rip, rsp, rflags); printf(" rax: %016lx rbx: %016lx rcx: %016lx\n", rax, rbx, rcx); printf(" rdx: %016lx rsi: %016lx rdi: %016lx\n", rdx, rsi, rdi); printf(" rbp: %016lx r8: %016lx r9: %016lx\n", rbp, r8, r9); printf(" r10: %016lx r11: %016lx r12: %016lx\n", r10, r11, r12); printf(" r13: %016lx r14: %016lx r15: %016lx\n", r13, r14, r15); if (ioctl(self->vcpu_fd, KVM_GET_SREGS, &sregs) < 0) die("KVM_GET_REGS failed"); cr0 = sregs.cr0; cr2 = sregs.cr2; cr3 = sregs.cr3; cr4 = sregs.cr4; cr8 = sregs.cr8; printf(" cr0: %016lx cr2: %016lx cr3: %016lx\n", cr0, cr2, cr3); printf(" cr4: %016lx cr8: %016lx\n", cr4, cr8); printf("Segment registers:\n"); printf(" register selector base limit type p dpl db s l g avl\n"); print_segment("cs ", &sregs.cs); print_segment("ss ", &sregs.ss); print_segment("ds ", &sregs.ds); print_segment("es ", &sregs.es); print_segment("fs ", &sregs.fs); print_segment("gs ", &sregs.gs); print_segment("tr ", &sregs.tr); print_segment("ldt", &sregs.ldt); print_dtable("gdt", &sregs.gdt); print_dtable("idt", &sregs.idt); printf(" [ efer: %016" PRIx64 " apic base: %016" PRIx64 " nmi: %s ]\n", (uint64_t) sregs.efer, (uint64_t) sregs.apic_base, (self->nmi_disabled ? "disabled" : "enabled")); printf("Interrupt bitmap:\n"); printf(" "); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) printf("%016" PRIx64 " ", (uint64_t) sregs.interrupt_bitmap[i]); printf("\n"); } void kvm__show_code(struct kvm *self) { unsigned int code_bytes = 64; unsigned int code_prologue = code_bytes * 43 / 64; unsigned int code_len = code_bytes; unsigned char c; unsigned int i; uint8_t *ip; if (ioctl(self->vcpu_fd, KVM_GET_REGS, &self->regs) < 0) die("KVM_GET_REGS failed"); if (ioctl(self->vcpu_fd, KVM_GET_SREGS, &self->sregs) < 0) die("KVM_GET_SREGS failed"); ip = guest_flat_to_host(self, ip_to_flat(self, self->regs.rip) - code_prologue); printf("Code: "); for (i = 0; i < code_len; i++, ip++) { if (!host_ptr_in_ram(self, ip)) break; c = *ip; if (ip == guest_flat_to_host(self, ip_to_flat(self, self->regs.rip))) printf("<%02x> ", c); else printf("%02x ", c); } printf("\n"); printf("Stack:\n"); kvm__dump_mem(self, self->regs.rsp, 32); } void kvm__show_page_tables(struct kvm *self) { uint64_t *pte1; uint64_t *pte2; uint64_t *pte3; uint64_t *pte4; if (!is_in_protected_mode(self)) return; if (ioctl(self->vcpu_fd, KVM_GET_SREGS, &self->sregs) < 0) die("KVM_GET_SREGS failed"); pte4 = guest_flat_to_host(self, self->sregs.cr3); if (!host_ptr_in_ram(self, pte4)) return; pte3 = guest_flat_to_host(self, (*pte4 & ~0xfff)); if (!host_ptr_in_ram(self, pte3)) return; pte2 = guest_flat_to_host(self, (*pte3 & ~0xfff)); if (!host_ptr_in_ram(self, pte2)) return; pte1 = guest_flat_to_host(self, (*pte2 & ~0xfff)); if (!host_ptr_in_ram(self, pte1)) return; printf("Page Tables:\n"); if (*pte2 & (1 << 7)) printf(" pte4: %016" PRIx64 " pte3: %016" PRIx64 " pte2: %016" PRIx64 "\n", *pte4, *pte3, *pte2); else printf(" pte4: %016" PRIx64 " pte3: %016" PRIx64 " pte2: %016" PRIx64 " pte1: %016" PRIx64 "\n", *pte4, *pte3, *pte2, *pte1); } void kvm__dump_mem(struct kvm *self, unsigned long addr, unsigned long size) { unsigned char *p; unsigned long n; size &= ~7; /* mod 8 */ if (!size) return; p = guest_flat_to_host(self, addr); for (n = 0; n < size; n+=8) { if (!host_ptr_in_ram(self, p + n)) break; printf(" 0x%08lx: %02x %02x %02x %02x %02x %02x %02x %02x\n", addr + n, p[n + 0], p[n + 1], p[n + 2], p[n + 3], p[n + 4], p[n + 5], p[n + 6], p[n + 7]); } }