#include "kvm/8250-serial.h" #include "kvm/read-write.h" #include "kvm/ioport.h" #include "kvm/mutex.h" #include "kvm/util.h" #include "kvm/term.h" #include "kvm/kvm.h" #include #include #include /* * This fakes a U6_16550A. The fifo len needs to be 64 as the kernel * expects that for autodetection. */ #define FIFO_LEN 64 #define FIFO_MASK (FIFO_LEN - 1) #define UART_IIR_TYPE_BITS 0xc0 struct serial8250_device { pthread_mutex_t mutex; u8 id; u16 iobase; u8 irq; u8 irq_state; int txcnt; int rxcnt; int rxdone; char txbuf[FIFO_LEN]; char rxbuf[FIFO_LEN]; u8 dll; u8 dlm; u8 iir; u8 ier; u8 fcr; u8 lcr; u8 mcr; u8 lsr; u8 msr; u8 scr; }; #define SERIAL_REGS_SETTING \ .iir = UART_IIR_NO_INT, \ .lsr = UART_LSR_TEMT | UART_LSR_THRE, \ .msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS, \ .mcr = UART_MCR_OUT2, static struct serial8250_device devices[] = { /* ttyS0 */ [0] = { .mutex = PTHREAD_MUTEX_INITIALIZER, .id = 0, .iobase = 0x3f8, .irq = 4, SERIAL_REGS_SETTING }, /* ttyS1 */ [1] = { .mutex = PTHREAD_MUTEX_INITIALIZER, .id = 1, .iobase = 0x2f8, .irq = 3, SERIAL_REGS_SETTING }, /* ttyS2 */ [2] = { .mutex = PTHREAD_MUTEX_INITIALIZER, .id = 2, .iobase = 0x3e8, .irq = 4, SERIAL_REGS_SETTING }, /* ttyS3 */ [3] = { .mutex = PTHREAD_MUTEX_INITIALIZER, .id = 3, .iobase = 0x2e8, .irq = 3, SERIAL_REGS_SETTING }, }; static void serial8250_flush_tx(struct serial8250_device *dev) { dev->lsr |= UART_LSR_TEMT | UART_LSR_THRE; if (dev->txcnt) { term_putc(CONSOLE_8250, dev->txbuf, dev->txcnt, dev->id); dev->txcnt = 0; } } static void serial8250_update_irq(struct kvm *kvm, struct serial8250_device *dev) { u8 iir = 0; /* Handle clear rx */ if (dev->lcr & UART_FCR_CLEAR_RCVR) { dev->lcr &= ~UART_FCR_CLEAR_RCVR; dev->rxcnt = dev->rxdone = 0; dev->lsr &= ~UART_LSR_DR; } /* Handle clear tx */ if (dev->lcr & UART_FCR_CLEAR_XMIT) { dev->lcr &= ~UART_FCR_CLEAR_XMIT; dev->txcnt = 0; dev->lsr |= UART_LSR_TEMT | UART_LSR_THRE; } /* Data ready and rcv interrupt enabled ? */ if ((dev->ier & UART_IER_RDI) && (dev->lsr & UART_LSR_DR)) iir |= UART_IIR_RDI; /* Transmitter empty and interrupt enabled ? */ if ((dev->ier & UART_IER_THRI) && (dev->lsr & UART_LSR_TEMT)) iir |= UART_IIR_THRI; /* Now update the irq line, if necessary */ if (!iir) { dev->iir = UART_IIR_NO_INT; if (dev->irq_state) kvm__irq_line(kvm, dev->irq, 0); } else { dev->iir = iir; if (!dev->irq_state) kvm__irq_line(kvm, dev->irq, 1); } dev->irq_state = iir; /* * If the kernel disabled the tx interrupt, we know that there * is nothing more to transmit, so we can reset our tx logic * here. */ if (!(dev->ier & UART_IER_THRI)) serial8250_flush_tx(dev); } #define SYSRQ_PENDING_NONE 0 #define SYSRQ_PENDING_BREAK 1 static int sysrq_pending; static void serial8250__sysrq(struct kvm *kvm, struct serial8250_device *dev) { dev->lsr |= UART_LSR_DR | UART_LSR_BI; dev->rxbuf[dev->rxcnt++] = 'p'; sysrq_pending = SYSRQ_PENDING_NONE; } static void serial8250__receive(struct kvm *kvm, struct serial8250_device *dev, bool handle_sysrq) { int c; /* * If the guest transmitted a full fifo, we clear the * TEMT/THRE bits to let the kernel escape from the 8250 * interrupt handler. We come here only once a ms, so that * should give the kernel the desired pause. That also flushes * the tx fifo to the terminal. */ serial8250_flush_tx(dev); if (dev->mcr & UART_MCR_LOOP) return; if ((dev->lsr & UART_LSR_DR) || dev->rxcnt) return; if (handle_sysrq && sysrq_pending) { serial8250__sysrq(kvm, dev); return; } while (term_readable(CONSOLE_8250, dev->id) && dev->rxcnt < FIFO_LEN) { c = term_getc(CONSOLE_8250, dev->id); if (c < 0) break; dev->rxbuf[dev->rxcnt++] = c; dev->lsr |= UART_LSR_DR; } } void serial8250__update_consoles(struct kvm *kvm) { unsigned int i; for (i = 0; i < ARRAY_SIZE(devices); i++) { struct serial8250_device *dev = &devices[i]; mutex_lock(&dev->mutex); /* Restrict sysrq injection to the first port */ serial8250__receive(kvm, dev, i == 0); serial8250_update_irq(kvm, dev); mutex_unlock(&dev->mutex); } } void serial8250__inject_sysrq(struct kvm *kvm) { sysrq_pending = SYSRQ_PENDING_BREAK; } static struct serial8250_device *find_device(u16 port) { unsigned int i; for (i = 0; i < ARRAY_SIZE(devices); i++) { struct serial8250_device *dev = &devices[i]; if (dev->iobase == (port & ~0x7)) return dev; } return NULL; } static bool serial8250_out(struct ioport *ioport, struct kvm *kvm, u16 port, void *data, int size) { struct serial8250_device *dev; u16 offset; bool ret = true; char *addr = data; dev = find_device(port); if (!dev) return false; mutex_lock(&dev->mutex); offset = port - dev->iobase; switch (offset) { case UART_TX: if (dev->lcr & UART_LCR_DLAB) { dev->dll = ioport__read8(data); break; } /* Loopback mode */ if (dev->mcr & UART_MCR_LOOP) { if (dev->rxcnt < FIFO_LEN) { dev->rxbuf[dev->rxcnt++] = *addr; dev->lsr |= UART_LSR_DR; } break; } if (dev->txcnt < FIFO_LEN) { dev->txbuf[dev->txcnt++] = *addr; dev->lsr &= ~UART_LSR_TEMT; if (dev->txcnt == FIFO_LEN / 2) dev->lsr &= ~UART_LSR_THRE; } else { /* Should never happpen */ dev->lsr &= ~(UART_LSR_TEMT | UART_LSR_THRE); } break; case UART_IER: if (!(dev->lcr & UART_LCR_DLAB)) dev->ier = ioport__read8(data) & 0x0f; else dev->dlm = ioport__read8(data); break; case UART_FCR: dev->fcr = ioport__read8(data); break; case UART_LCR: dev->lcr = ioport__read8(data); break; case UART_MCR: dev->mcr = ioport__read8(data); break; case UART_LSR: /* Factory test */ break; case UART_MSR: /* Not used */ break; case UART_SCR: dev->scr = ioport__read8(data); break; default: ret = false; break; } serial8250_update_irq(kvm, dev); mutex_unlock(&dev->mutex); return ret; } static void serial8250_rx(struct serial8250_device *dev, void *data) { if (dev->rxdone == dev->rxcnt) return; /* Break issued ? */ if (dev->lsr & UART_LSR_BI) { dev->lsr &= ~UART_LSR_BI; ioport__write8(data, 0); return; } ioport__write8(data, dev->rxbuf[dev->rxdone++]); if (dev->rxcnt == dev->rxdone) { dev->lsr &= ~UART_LSR_DR; dev->rxcnt = dev->rxdone = 0; } } static bool serial8250_in(struct ioport *ioport, struct kvm *kvm, u16 port, void *data, int size) { struct serial8250_device *dev; u16 offset; bool ret = true; dev = find_device(port); if (!dev) return false; mutex_lock(&dev->mutex); offset = port - dev->iobase; switch (offset) { case UART_RX: if (dev->lcr & UART_LCR_DLAB) ioport__write8(data, dev->dll); else serial8250_rx(dev, data); break; case UART_IER: if (dev->lcr & UART_LCR_DLAB) ioport__write8(data, dev->dlm); else ioport__write8(data, dev->ier); break; case UART_IIR: ioport__write8(data, dev->iir | UART_IIR_TYPE_BITS); break; case UART_LCR: ioport__write8(data, dev->lcr); break; case UART_MCR: ioport__write8(data, dev->mcr); break; case UART_LSR: ioport__write8(data, dev->lsr); break; case UART_MSR: ioport__write8(data, dev->msr); break; case UART_SCR: ioport__write8(data, dev->scr); break; default: ret = false; break; } serial8250_update_irq(kvm, dev); mutex_unlock(&dev->mutex); return ret; } static struct ioport_operations serial8250_ops = { .io_in = serial8250_in, .io_out = serial8250_out, }; static void serial8250__device_init(struct kvm *kvm, struct serial8250_device *dev) { ioport__register(dev->iobase, &serial8250_ops, 8, NULL); kvm__irq_line(kvm, dev->irq, 0); } void serial8250__init(struct kvm *kvm) { unsigned int i; for (i = 0; i < ARRAY_SIZE(devices); i++) { struct serial8250_device *dev = &devices[i]; serial8250__device_init(kvm, dev); } }