/* * x86/vmx.c : Framework for testing nested virtualization * This is a framework to test nested VMX for KVM, which * started as a project of GSoC 2013. All test cases should * be located in x86/vmx_tests.c and framework related * functions should be in this file. * * How to write test cases? * Add callbacks of test suite in variant "vmx_tests". You can * write: * 1. init function used for initializing test suite * 2. main function for codes running in L2 guest, * 3. exit_handler to handle vmexit of L2 to L1 * 4. syscall handler to handle L2 syscall vmexit * 5. vmenter fail handler to handle direct failure of vmenter * 6. guest_regs is loaded when vmenter and saved when * vmexit, you can read and set it in exit_handler * If no special function is needed for a test suite, use * coressponding basic_* functions as callback. More handlers * can be added to "vmx_tests", see details of "struct vmx_test" * and function test_run(). * * Currently, vmx test framework only set up one VCPU and one * concurrent guest test environment with same paging for L2 and * L1. For usage of EPT, only 1:1 mapped paging is used from VFN * to PFN. * * Author : Arthur Chunqi Li */ #include "libcflat.h" #include "processor.h" #include "alloc_page.h" #include "vm.h" #include "vmalloc.h" #include "desc.h" #include "vmx.h" #include "msr.h" #include "smp.h" #include "apic.h" u64 *bsp_vmxon_region; struct vmcs *vmcs_root; u32 vpid_cnt; u64 guest_stack_top, guest_syscall_stack_top; u32 ctrl_pin, ctrl_enter, ctrl_exit, ctrl_cpu[2]; struct regs regs; struct vmx_test *current; #define MAX_TEST_TEARDOWN_STEPS 10 struct test_teardown_step { test_teardown_func func; void *data; }; static int teardown_count; static struct test_teardown_step teardown_steps[MAX_TEST_TEARDOWN_STEPS]; static test_guest_func v2_guest_main; u64 hypercall_field; bool launched; static int matched; static int guest_finished; static int in_guest; union vmx_basic basic; union vmx_ctrl_msr ctrl_pin_rev; union vmx_ctrl_msr ctrl_cpu_rev[2]; union vmx_ctrl_msr ctrl_exit_rev; union vmx_ctrl_msr ctrl_enter_rev; union vmx_ept_vpid ept_vpid; extern struct descriptor_table_ptr gdt_descr; extern struct descriptor_table_ptr idt_descr; extern void *vmx_return; extern void *entry_sysenter; extern void *guest_entry; static volatile u32 stage; static jmp_buf abort_target; struct vmcs_field { u64 mask; u64 encoding; }; #define MASK(_bits) GENMASK_ULL((_bits) - 1, 0) #define MASK_NATURAL MASK(sizeof(unsigned long) * 8) static struct vmcs_field vmcs_fields[] = { { MASK(16), VPID }, { MASK(16), PINV }, { MASK(16), EPTP_IDX }, { MASK(16), GUEST_SEL_ES }, { MASK(16), GUEST_SEL_CS }, { MASK(16), GUEST_SEL_SS }, { MASK(16), GUEST_SEL_DS }, { MASK(16), GUEST_SEL_FS }, { MASK(16), GUEST_SEL_GS }, { MASK(16), GUEST_SEL_LDTR }, { MASK(16), GUEST_SEL_TR }, { MASK(16), GUEST_INT_STATUS }, { MASK(16), HOST_SEL_ES }, { MASK(16), HOST_SEL_CS }, { MASK(16), HOST_SEL_SS }, { MASK(16), HOST_SEL_DS }, { MASK(16), HOST_SEL_FS }, { MASK(16), HOST_SEL_GS }, { MASK(16), HOST_SEL_TR }, { MASK(64), IO_BITMAP_A }, { MASK(64), IO_BITMAP_B }, { MASK(64), MSR_BITMAP }, { MASK(64), EXIT_MSR_ST_ADDR }, { MASK(64), EXIT_MSR_LD_ADDR }, { MASK(64), ENTER_MSR_LD_ADDR }, { MASK(64), VMCS_EXEC_PTR }, { MASK(64), TSC_OFFSET }, { MASK(64), APIC_VIRT_ADDR }, { MASK(64), APIC_ACCS_ADDR }, { MASK(64), EPTP }, { MASK(64), INFO_PHYS_ADDR }, { MASK(64), VMCS_LINK_PTR }, { MASK(64), GUEST_DEBUGCTL }, { MASK(64), GUEST_EFER }, { MASK(64), GUEST_PAT }, { MASK(64), GUEST_PERF_GLOBAL_CTRL }, { MASK(64), GUEST_PDPTE }, { MASK(64), HOST_PAT }, { MASK(64), HOST_EFER }, { MASK(64), HOST_PERF_GLOBAL_CTRL }, { MASK(32), PIN_CONTROLS }, { MASK(32), CPU_EXEC_CTRL0 }, { MASK(32), EXC_BITMAP }, { MASK(32), PF_ERROR_MASK }, { MASK(32), PF_ERROR_MATCH }, { MASK(32), CR3_TARGET_COUNT }, { MASK(32), EXI_CONTROLS }, { MASK(32), EXI_MSR_ST_CNT }, { MASK(32), EXI_MSR_LD_CNT }, { MASK(32), ENT_CONTROLS }, { MASK(32), ENT_MSR_LD_CNT }, { MASK(32), ENT_INTR_INFO }, { MASK(32), ENT_INTR_ERROR }, { MASK(32), ENT_INST_LEN }, { MASK(32), TPR_THRESHOLD }, { MASK(32), CPU_EXEC_CTRL1 }, { MASK(32), VMX_INST_ERROR }, { MASK(32), EXI_REASON }, { MASK(32), EXI_INTR_INFO }, { MASK(32), EXI_INTR_ERROR }, { MASK(32), IDT_VECT_INFO }, { MASK(32), IDT_VECT_ERROR }, { MASK(32), EXI_INST_LEN }, { MASK(32), EXI_INST_INFO }, { MASK(32), GUEST_LIMIT_ES }, { MASK(32), GUEST_LIMIT_CS }, { MASK(32), GUEST_LIMIT_SS }, { MASK(32), GUEST_LIMIT_DS }, { MASK(32), GUEST_LIMIT_FS }, { MASK(32), GUEST_LIMIT_GS }, { MASK(32), GUEST_LIMIT_LDTR }, { MASK(32), GUEST_LIMIT_TR }, { MASK(32), GUEST_LIMIT_GDTR }, { MASK(32), GUEST_LIMIT_IDTR }, { 0x1d0ff, GUEST_AR_ES }, { 0x1f0ff, GUEST_AR_CS }, { 0x1d0ff, GUEST_AR_SS }, { 0x1d0ff, GUEST_AR_DS }, { 0x1d0ff, GUEST_AR_FS }, { 0x1d0ff, GUEST_AR_GS }, { 0x1d0ff, GUEST_AR_LDTR }, { 0x1d0ff, GUEST_AR_TR }, { MASK(32), GUEST_INTR_STATE }, { MASK(32), GUEST_ACTV_STATE }, { MASK(32), GUEST_SMBASE }, { MASK(32), GUEST_SYSENTER_CS }, { MASK(32), PREEMPT_TIMER_VALUE }, { MASK(32), HOST_SYSENTER_CS }, { MASK_NATURAL, CR0_MASK }, { MASK_NATURAL, CR4_MASK }, { MASK_NATURAL, CR0_READ_SHADOW }, { MASK_NATURAL, CR4_READ_SHADOW }, { MASK_NATURAL, CR3_TARGET_0 }, { MASK_NATURAL, CR3_TARGET_1 }, { MASK_NATURAL, CR3_TARGET_2 }, { MASK_NATURAL, CR3_TARGET_3 }, { MASK_NATURAL, EXI_QUALIFICATION }, { MASK_NATURAL, IO_RCX }, { MASK_NATURAL, IO_RSI }, { MASK_NATURAL, IO_RDI }, { MASK_NATURAL, IO_RIP }, { MASK_NATURAL, GUEST_LINEAR_ADDRESS }, { MASK_NATURAL, GUEST_CR0 }, { MASK_NATURAL, GUEST_CR3 }, { MASK_NATURAL, GUEST_CR4 }, { MASK_NATURAL, GUEST_BASE_ES }, { MASK_NATURAL, GUEST_BASE_CS }, { MASK_NATURAL, GUEST_BASE_SS }, { MASK_NATURAL, GUEST_BASE_DS }, { MASK_NATURAL, GUEST_BASE_FS }, { MASK_NATURAL, GUEST_BASE_GS }, { MASK_NATURAL, GUEST_BASE_LDTR }, { MASK_NATURAL, GUEST_BASE_TR }, { MASK_NATURAL, GUEST_BASE_GDTR }, { MASK_NATURAL, GUEST_BASE_IDTR }, { MASK_NATURAL, GUEST_DR7 }, { MASK_NATURAL, GUEST_RSP }, { MASK_NATURAL, GUEST_RIP }, { MASK_NATURAL, GUEST_RFLAGS }, { MASK_NATURAL, GUEST_PENDING_DEBUG }, { MASK_NATURAL, GUEST_SYSENTER_ESP }, { MASK_NATURAL, GUEST_SYSENTER_EIP }, { MASK_NATURAL, HOST_CR0 }, { MASK_NATURAL, HOST_CR3 }, { MASK_NATURAL, HOST_CR4 }, { MASK_NATURAL, HOST_BASE_FS }, { MASK_NATURAL, HOST_BASE_GS }, { MASK_NATURAL, HOST_BASE_TR }, { MASK_NATURAL, HOST_BASE_GDTR }, { MASK_NATURAL, HOST_BASE_IDTR }, { MASK_NATURAL, HOST_SYSENTER_ESP }, { MASK_NATURAL, HOST_SYSENTER_EIP }, { MASK_NATURAL, HOST_RSP }, { MASK_NATURAL, HOST_RIP }, }; enum vmcs_field_type { VMCS_FIELD_TYPE_CONTROL = 0, VMCS_FIELD_TYPE_READ_ONLY_DATA = 1, VMCS_FIELD_TYPE_GUEST = 2, VMCS_FIELD_TYPE_HOST = 3, VMCS_FIELD_TYPES, }; static inline int vmcs_field_type(struct vmcs_field *f) { return (f->encoding >> VMCS_FIELD_TYPE_SHIFT) & 0x3; } static int vmcs_field_readonly(struct vmcs_field *f) { u64 ia32_vmx_misc; ia32_vmx_misc = rdmsr(MSR_IA32_VMX_MISC); return !(ia32_vmx_misc & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS) && (vmcs_field_type(f) == VMCS_FIELD_TYPE_READ_ONLY_DATA); } static inline u64 vmcs_field_value(struct vmcs_field *f, u8 cookie) { u64 value; /* Incorporate the cookie and the field encoding into the value. */ value = cookie; value |= (f->encoding << 8); value |= 0xdeadbeefull << 32; return value & f->mask; } static void set_vmcs_field(struct vmcs_field *f, u8 cookie) { vmcs_write(f->encoding, vmcs_field_value(f, cookie)); } static bool check_vmcs_field(struct vmcs_field *f, u8 cookie) { u64 expected; u64 actual; int ret; if (f->encoding == VMX_INST_ERROR) { printf("Skipping volatile field %lx\n", f->encoding); return true; } ret = vmcs_read_safe(f->encoding, &actual); assert(!(ret & X86_EFLAGS_CF)); /* Skip VMCS fields that aren't recognized by the CPU */ if (ret & X86_EFLAGS_ZF) return true; if (vmcs_field_readonly(f)) { printf("Skipping read-only field %lx\n", f->encoding); return true; } expected = vmcs_field_value(f, cookie); actual &= f->mask; if (expected == actual) return true; printf("FAIL: VMWRITE/VMREAD %lx (expected: %lx, actual: %lx)\n", f->encoding, (unsigned long) expected, (unsigned long) actual); return false; } static void set_all_vmcs_fields(u8 cookie) { int i; for (i = 0; i < ARRAY_SIZE(vmcs_fields); i++) set_vmcs_field(&vmcs_fields[i], cookie); } static bool check_all_vmcs_fields(u8 cookie) { bool pass = true; int i; for (i = 0; i < ARRAY_SIZE(vmcs_fields); i++) { if (!check_vmcs_field(&vmcs_fields[i], cookie)) pass = false; } return pass; } static u32 find_vmcs_max_index(void) { u32 idx, width, type, enc; u64 actual; int ret; /* scan backwards and stop when found */ for (idx = (1 << 9) - 1; idx >= 0; idx--) { /* try all combinations of width and type */ for (type = 0; type < (1 << 2); type++) { for (width = 0; width < (1 << 2) ; width++) { enc = (idx << VMCS_FIELD_INDEX_SHIFT) | (type << VMCS_FIELD_TYPE_SHIFT) | (width << VMCS_FIELD_WIDTH_SHIFT); ret = vmcs_read_safe(enc, &actual); assert(!(ret & X86_EFLAGS_CF)); if (!(ret & X86_EFLAGS_ZF)) return idx; } } } /* some VMCS fields should exist */ assert(0); return 0; } static void test_vmwrite_vmread(void) { struct vmcs *vmcs = alloc_page(); u32 vmcs_enum_max, max_index = 0; vmcs->hdr.revision_id = basic.revision; assert(!vmcs_clear(vmcs)); assert(!make_vmcs_current(vmcs)); set_all_vmcs_fields(0x42); report(check_all_vmcs_fields(0x42), "VMWRITE/VMREAD"); vmcs_enum_max = (rdmsr(MSR_IA32_VMX_VMCS_ENUM) & VMCS_FIELD_INDEX_MASK) >> VMCS_FIELD_INDEX_SHIFT; max_index = find_vmcs_max_index(); report(vmcs_enum_max == max_index, "VMX_VMCS_ENUM.MAX_INDEX expected: %x, actual: %x", max_index, vmcs_enum_max); assert(!vmcs_clear(vmcs)); free_page(vmcs); } static void __test_vmread_vmwrite_pf(bool vmread, u64 *val, u8 sentinel) { unsigned long flags = sentinel; unsigned int vector; /* * Execute VMREAD/VMWRITE with a not-PRESENT memory operand, and verify * a #PF occurred and RFLAGS were not modified. */ if (vmread) asm volatile ("sahf\n\t" ASM_TRY("1f") "vmread %[enc], %[val]\n\t" "1: lahf" : [val] "=m" (*val), [flags] "+a" (flags) : [enc] "r" ((u64)GUEST_SEL_SS) : "cc"); else asm volatile ("sahf\n\t" ASM_TRY("1f") "vmwrite %[val], %[enc]\n\t" "1: lahf" : [val] "=m" (*val), [flags] "+a" (flags) : [enc] "r" ((u64)GUEST_SEL_SS) : "cc"); vector = exception_vector(); report(vector == PF_VECTOR, "Expected #PF on %s, got exception '0x%x'\n", vmread ? "VMREAD" : "VMWRITE", vector); report((u8)flags == sentinel, "Expected RFLAGS 0x%x, got 0x%x", sentinel, (u8)flags); } static void test_vmread_vmwrite_pf(bool vmread) { struct vmcs *vmcs = alloc_page(); void *vpage = alloc_vpage(); memset(vmcs, 0, PAGE_SIZE); vmcs->hdr.revision_id = basic.revision; assert(!vmcs_clear(vmcs)); assert(!make_vmcs_current(vmcs)); /* * Test with two values to candy-stripe the 5 flags stored/loaded by * SAHF/LAHF. */ __test_vmread_vmwrite_pf(vmread, vpage, 0x91); __test_vmread_vmwrite_pf(vmread, vpage, 0x45); } static void test_vmread_flags_touch(void) { test_vmread_vmwrite_pf(true); } static void test_vmwrite_flags_touch(void) { test_vmread_vmwrite_pf(false); } static void test_vmcs_high(void) { struct vmcs *vmcs = alloc_page(); vmcs->hdr.revision_id = basic.revision; assert(!vmcs_clear(vmcs)); assert(!make_vmcs_current(vmcs)); vmcs_write(TSC_OFFSET, 0x0123456789ABCDEFull); report(vmcs_read(TSC_OFFSET) == 0x0123456789ABCDEFull, "VMREAD TSC_OFFSET after VMWRITE TSC_OFFSET"); report(vmcs_read(TSC_OFFSET_HI) == 0x01234567ull, "VMREAD TSC_OFFSET_HI after VMWRITE TSC_OFFSET"); vmcs_write(TSC_OFFSET_HI, 0x76543210ul); report(vmcs_read(TSC_OFFSET_HI) == 0x76543210ul, "VMREAD TSC_OFFSET_HI after VMWRITE TSC_OFFSET_HI"); report(vmcs_read(TSC_OFFSET) == 0x7654321089ABCDEFull, "VMREAD TSC_OFFSET after VMWRITE TSC_OFFSET_HI"); assert(!vmcs_clear(vmcs)); free_page(vmcs); } static void test_vmcs_lifecycle(void) { struct vmcs *vmcs[2] = {}; int i; for (i = 0; i < ARRAY_SIZE(vmcs); i++) { vmcs[i] = alloc_page(); vmcs[i]->hdr.revision_id = basic.revision; } #define VMPTRLD(_i) do { \ assert(_i < ARRAY_SIZE(vmcs)); \ assert(!make_vmcs_current(vmcs[_i])); \ printf("VMPTRLD VMCS%d\n", (_i)); \ } while (0) #define VMCLEAR(_i) do { \ assert(_i < ARRAY_SIZE(vmcs)); \ assert(!vmcs_clear(vmcs[_i])); \ printf("VMCLEAR VMCS%d\n", (_i)); \ } while (0) VMCLEAR(0); VMPTRLD(0); set_all_vmcs_fields(0); report(check_all_vmcs_fields(0), "current:VMCS0 active:[VMCS0]"); VMCLEAR(0); VMPTRLD(0); report(check_all_vmcs_fields(0), "current:VMCS0 active:[VMCS0]"); VMCLEAR(1); report(check_all_vmcs_fields(0), "current:VMCS0 active:[VMCS0]"); VMPTRLD(1); set_all_vmcs_fields(1); report(check_all_vmcs_fields(1), "current:VMCS1 active:[VMCS0,VCMS1]"); VMPTRLD(0); report(check_all_vmcs_fields(0), "current:VMCS0 active:[VMCS0,VCMS1]"); VMPTRLD(1); report(check_all_vmcs_fields(1), "current:VMCS1 active:[VMCS0,VCMS1]"); VMPTRLD(1); report(check_all_vmcs_fields(1), "current:VMCS1 active:[VMCS0,VCMS1]"); VMCLEAR(0); report(check_all_vmcs_fields(1), "current:VMCS1 active:[VCMS1]"); /* VMPTRLD should not erase VMWRITEs to the current VMCS */ set_all_vmcs_fields(2); VMPTRLD(1); report(check_all_vmcs_fields(2), "current:VMCS1 active:[VCMS1]"); for (i = 0; i < ARRAY_SIZE(vmcs); i++) { VMCLEAR(i); free_page(vmcs[i]); } #undef VMPTRLD #undef VMCLEAR } void vmx_set_test_stage(u32 s) { barrier(); stage = s; barrier(); } u32 vmx_get_test_stage(void) { u32 s; barrier(); s = stage; barrier(); return s; } void vmx_inc_test_stage(void) { barrier(); stage++; barrier(); } /* entry_sysenter */ asm( ".align 4, 0x90\n\t" ".globl entry_sysenter\n\t" "entry_sysenter:\n\t" SAVE_GPR " and $0xf, %rax\n\t" " mov %rax, %rdi\n\t" " call syscall_handler\n\t" LOAD_GPR " vmresume\n\t" ); static void __attribute__((__used__)) syscall_handler(u64 syscall_no) { if (current->syscall_handler) current->syscall_handler(syscall_no); } static const char * const exit_reason_descriptions[] = { [VMX_EXC_NMI] = "VMX_EXC_NMI", [VMX_EXTINT] = "VMX_EXTINT", [VMX_TRIPLE_FAULT] = "VMX_TRIPLE_FAULT", [VMX_INIT] = "VMX_INIT", [VMX_SIPI] = "VMX_SIPI", [VMX_SMI_IO] = "VMX_SMI_IO", [VMX_SMI_OTHER] = "VMX_SMI_OTHER", [VMX_INTR_WINDOW] = "VMX_INTR_WINDOW", [VMX_NMI_WINDOW] = "VMX_NMI_WINDOW", [VMX_TASK_SWITCH] = "VMX_TASK_SWITCH", [VMX_CPUID] = "VMX_CPUID", [VMX_GETSEC] = "VMX_GETSEC", [VMX_HLT] = "VMX_HLT", [VMX_INVD] = "VMX_INVD", [VMX_INVLPG] = "VMX_INVLPG", [VMX_RDPMC] = "VMX_RDPMC", [VMX_RDTSC] = "VMX_RDTSC", [VMX_RSM] = "VMX_RSM", [VMX_VMCALL] = "VMX_VMCALL", [VMX_VMCLEAR] = "VMX_VMCLEAR", [VMX_VMLAUNCH] = "VMX_VMLAUNCH", [VMX_VMPTRLD] = "VMX_VMPTRLD", [VMX_VMPTRST] = "VMX_VMPTRST", [VMX_VMREAD] = "VMX_VMREAD", [VMX_VMRESUME] = "VMX_VMRESUME", [VMX_VMWRITE] = "VMX_VMWRITE", [VMX_VMXOFF] = "VMX_VMXOFF", [VMX_VMXON] = "VMX_VMXON", [VMX_CR] = "VMX_CR", [VMX_DR] = "VMX_DR", [VMX_IO] = "VMX_IO", [VMX_RDMSR] = "VMX_RDMSR", [VMX_WRMSR] = "VMX_WRMSR", [VMX_FAIL_STATE] = "VMX_FAIL_STATE", [VMX_FAIL_MSR] = "VMX_FAIL_MSR", [VMX_MWAIT] = "VMX_MWAIT", [VMX_MTF] = "VMX_MTF", [VMX_MONITOR] = "VMX_MONITOR", [VMX_PAUSE] = "VMX_PAUSE", [VMX_FAIL_MCHECK] = "VMX_FAIL_MCHECK", [VMX_TPR_THRESHOLD] = "VMX_TPR_THRESHOLD", [VMX_APIC_ACCESS] = "VMX_APIC_ACCESS", [VMX_EOI_INDUCED] = "VMX_EOI_INDUCED", [VMX_GDTR_IDTR] = "VMX_GDTR_IDTR", [VMX_LDTR_TR] = "VMX_LDTR_TR", [VMX_EPT_VIOLATION] = "VMX_EPT_VIOLATION", [VMX_EPT_MISCONFIG] = "VMX_EPT_MISCONFIG", [VMX_INVEPT] = "VMX_INVEPT", [VMX_PREEMPT] = "VMX_PREEMPT", [VMX_INVVPID] = "VMX_INVVPID", [VMX_WBINVD] = "VMX_WBINVD", [VMX_XSETBV] = "VMX_XSETBV", [VMX_APIC_WRITE] = "VMX_APIC_WRITE", [VMX_RDRAND] = "VMX_RDRAND", [VMX_INVPCID] = "VMX_INVPCID", [VMX_VMFUNC] = "VMX_VMFUNC", [VMX_RDSEED] = "VMX_RDSEED", [VMX_PML_FULL] = "VMX_PML_FULL", [VMX_XSAVES] = "VMX_XSAVES", [VMX_XRSTORS] = "VMX_XRSTORS", }; const char *exit_reason_description(u64 reason) { if (reason >= ARRAY_SIZE(exit_reason_descriptions)) return "(unknown)"; return exit_reason_descriptions[reason] ? : "(unused)"; } void print_vmexit_info(union exit_reason exit_reason) { u64 guest_rip, guest_rsp; ulong exit_qual = vmcs_read(EXI_QUALIFICATION); guest_rip = vmcs_read(GUEST_RIP); guest_rsp = vmcs_read(GUEST_RSP); printf("VMEXIT info:\n"); printf("\tvmexit reason = %u\n", exit_reason.basic); printf("\tfailed vmentry = %u\n", !!exit_reason.failed_vmentry); printf("\texit qualification = %#lx\n", exit_qual); printf("\tguest_rip = %#lx\n", guest_rip); printf("\tRAX=%#lx RBX=%#lx RCX=%#lx RDX=%#lx\n", regs.rax, regs.rbx, regs.rcx, regs.rdx); printf("\tRSP=%#lx RBP=%#lx RSI=%#lx RDI=%#lx\n", guest_rsp, regs.rbp, regs.rsi, regs.rdi); printf("\tR8 =%#lx R9 =%#lx R10=%#lx R11=%#lx\n", regs.r8, regs.r9, regs.r10, regs.r11); printf("\tR12=%#lx R13=%#lx R14=%#lx R15=%#lx\n", regs.r12, regs.r13, regs.r14, regs.r15); } void print_vmentry_failure_info(struct vmentry_result *result) { if (result->entered) return; if (result->vm_fail) { printf("VM-Fail on %s: ", result->instr); switch (result->flags & VMX_ENTRY_FLAGS) { case X86_EFLAGS_CF: printf("current-VMCS pointer is not valid.\n"); break; case X86_EFLAGS_ZF: printf("error number is %ld. See Intel 30.4.\n", vmcs_read(VMX_INST_ERROR)); break; default: printf("unexpected flags %lx!\n", result->flags); } } else { u64 qual = vmcs_read(EXI_QUALIFICATION); printf("VM-Exit failure on %s (reason=%#x, qual=%#lx): ", result->instr, result->exit_reason.full, qual); switch (result->exit_reason.basic) { case VMX_FAIL_STATE: printf("invalid guest state\n"); break; case VMX_FAIL_MSR: printf("MSR loading\n"); break; case VMX_FAIL_MCHECK: printf("machine-check event\n"); break; default: printf("unexpected basic exit reason %u\n", result->exit_reason.basic); } if (!result->exit_reason.failed_vmentry) printf("\tVMX_ENTRY_FAILURE BIT NOT SET!\n"); if (result->exit_reason.full & 0x7fff0000) printf("\tRESERVED BITS SET!\n"); } } /* * VMCLEAR should ensures all VMCS state is flushed to the VMCS * region in memory. */ static void test_vmclear_flushing(void) { struct vmcs *vmcs[3] = {}; int i; for (i = 0; i < ARRAY_SIZE(vmcs); i++) { vmcs[i] = alloc_page(); } vmcs[0]->hdr.revision_id = basic.revision; assert(!vmcs_clear(vmcs[0])); assert(!make_vmcs_current(vmcs[0])); set_all_vmcs_fields(0x86); assert(!vmcs_clear(vmcs[0])); memcpy(vmcs[1], vmcs[0], basic.size); assert(!make_vmcs_current(vmcs[1])); report(check_all_vmcs_fields(0x86), "test vmclear flush (current VMCS)"); set_all_vmcs_fields(0x87); assert(!make_vmcs_current(vmcs[0])); assert(!vmcs_clear(vmcs[1])); memcpy(vmcs[2], vmcs[1], basic.size); assert(!make_vmcs_current(vmcs[2])); report(check_all_vmcs_fields(0x87), "test vmclear flush (!current VMCS)"); for (i = 0; i < ARRAY_SIZE(vmcs); i++) { assert(!vmcs_clear(vmcs[i])); free_page(vmcs[i]); } } static void test_vmclear(void) { struct vmcs *tmp_root; int width = cpuid_maxphyaddr(); /* * Note- The tests below do not necessarily have a * valid VMCS, but that's ok since the invalid vmcs * is only used for a specific test and is discarded * without touching its contents */ /* Unaligned page access */ tmp_root = (struct vmcs *)((intptr_t)vmcs_root + 1); report(vmcs_clear(tmp_root) == 1, "test vmclear with unaligned vmcs"); /* gpa bits beyond physical address width are set*/ tmp_root = (struct vmcs *)((intptr_t)vmcs_root | ((u64)1 << (width+1))); report(vmcs_clear(tmp_root) == 1, "test vmclear with vmcs address bits set beyond physical address width"); /* Pass VMXON region */ tmp_root = (struct vmcs *)bsp_vmxon_region; report(vmcs_clear(tmp_root) == 1, "test vmclear with vmxon region"); /* Valid VMCS */ report(vmcs_clear(vmcs_root) == 0, "test vmclear with valid vmcs region"); test_vmclear_flushing(); } static void __attribute__((__used__)) guest_main(void) { if (current->v2) v2_guest_main(); else current->guest_main(); } /* guest_entry */ asm( ".align 4, 0x90\n\t" ".globl entry_guest\n\t" "guest_entry:\n\t" " call guest_main\n\t" " mov $1, %edi\n\t" " call hypercall\n\t" ); /* EPT paging structure related functions */ /* split_large_ept_entry: Split a 2M/1G large page into 512 smaller PTEs. @ptep : large page table entry to split @level : level of ptep (2 or 3) */ static void split_large_ept_entry(unsigned long *ptep, int level) { unsigned long *new_pt; unsigned long gpa; unsigned long pte; unsigned long prototype; int i; pte = *ptep; assert(pte & EPT_PRESENT); assert(pte & EPT_LARGE_PAGE); assert(level == 2 || level == 3); new_pt = alloc_page(); assert(new_pt); prototype = pte & ~EPT_ADDR_MASK; if (level == 2) prototype &= ~EPT_LARGE_PAGE; gpa = pte & EPT_ADDR_MASK; for (i = 0; i < EPT_PGDIR_ENTRIES; i++) { new_pt[i] = prototype | gpa; gpa += 1ul << EPT_LEVEL_SHIFT(level - 1); } pte &= ~EPT_LARGE_PAGE; pte &= ~EPT_ADDR_MASK; pte |= virt_to_phys(new_pt); *ptep = pte; } /* install_ept_entry : Install a page to a given level in EPT @pml4 : addr of pml4 table @pte_level : level of PTE to set @guest_addr : physical address of guest @pte : pte value to set @pt_page : address of page table, NULL for a new page */ void install_ept_entry(unsigned long *pml4, int pte_level, unsigned long guest_addr, unsigned long pte, unsigned long *pt_page) { int level; unsigned long *pt = pml4; unsigned offset; /* EPT only uses 48 bits of GPA. */ assert(guest_addr < (1ul << 48)); for (level = EPT_PAGE_LEVEL; level > pte_level; --level) { offset = (guest_addr >> EPT_LEVEL_SHIFT(level)) & EPT_PGDIR_MASK; if (!(pt[offset] & (EPT_PRESENT))) { unsigned long *new_pt = pt_page; if (!new_pt) new_pt = alloc_page(); else pt_page = 0; memset(new_pt, 0, PAGE_SIZE); pt[offset] = virt_to_phys(new_pt) | EPT_RA | EPT_WA | EPT_EA; } else if (pt[offset] & EPT_LARGE_PAGE) split_large_ept_entry(&pt[offset], level); pt = phys_to_virt(pt[offset] & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(level)) & EPT_PGDIR_MASK; pt[offset] = pte; } /* Map a page, @perm is the permission of the page */ void install_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 1, guest_addr, (phys & PAGE_MASK) | perm, 0); } /* Map a 1G-size page */ void install_1g_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 3, guest_addr, (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); } /* Map a 2M-size page */ void install_2m_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 2, guest_addr, (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); } /* setup_ept_range : Setup a range of 1:1 mapped page to EPT paging structure. @start : start address of guest page @len : length of address to be mapped @map_1g : whether 1G page map is used @map_2m : whether 2M page map is used @perm : permission for every page */ void setup_ept_range(unsigned long *pml4, unsigned long start, unsigned long len, int map_1g, int map_2m, u64 perm) { u64 phys = start; u64 max = (u64)len + (u64)start; if (map_1g) { while (phys + PAGE_SIZE_1G <= max) { install_1g_ept(pml4, phys, phys, perm); phys += PAGE_SIZE_1G; } } if (map_2m) { while (phys + PAGE_SIZE_2M <= max) { install_2m_ept(pml4, phys, phys, perm); phys += PAGE_SIZE_2M; } } while (phys + PAGE_SIZE <= max) { install_ept(pml4, phys, phys, perm); phys += PAGE_SIZE; } } /* get_ept_pte : Get the PTE of a given level in EPT, @level == 1 means get the latest level*/ bool get_ept_pte(unsigned long *pml4, unsigned long guest_addr, int level, unsigned long *pte) { int l; unsigned long *pt = pml4, iter_pte; unsigned offset; assert(level >= 1 && level <= 4); for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; iter_pte = pt[offset]; if (l == level) break; if (l < 4 && (iter_pte & EPT_LARGE_PAGE)) return false; if (!(iter_pte & (EPT_PRESENT))) return false; pt = (unsigned long *)(iter_pte & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; if (pte) *pte = pt[offset]; return true; } static void clear_ept_ad_pte(unsigned long *pml4, unsigned long guest_addr) { int l; unsigned long *pt = pml4; u64 pte; unsigned offset; for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; pt[offset] &= ~(EPT_ACCESS_FLAG|EPT_DIRTY_FLAG); pte = pt[offset]; if (l == 1 || (l < 4 && (pte & EPT_LARGE_PAGE))) break; pt = (unsigned long *)(pte & EPT_ADDR_MASK); } } /* clear_ept_ad : Clear EPT A/D bits for the page table walk and the final GPA of a guest address. */ void clear_ept_ad(unsigned long *pml4, u64 guest_cr3, unsigned long guest_addr) { int l; unsigned long *pt = (unsigned long *)guest_cr3, gpa; u64 pte, offset_in_page; unsigned offset; for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; clear_ept_ad_pte(pml4, (u64) &pt[offset]); pte = pt[offset]; if (l == 1 || (l < 4 && (pte & PT_PAGE_SIZE_MASK))) break; if (!(pte & PT_PRESENT_MASK)) return; pt = (unsigned long *)(pte & PT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; offset_in_page = guest_addr & ((1 << EPT_LEVEL_SHIFT(l)) - 1); gpa = (pt[offset] & PT_ADDR_MASK) | (guest_addr & offset_in_page); clear_ept_ad_pte(pml4, gpa); } /* check_ept_ad : Check the content of EPT A/D bits for the page table walk and the final GPA of a guest address. */ void check_ept_ad(unsigned long *pml4, u64 guest_cr3, unsigned long guest_addr, int expected_gpa_ad, int expected_pt_ad) { int l; unsigned long *pt = (unsigned long *)guest_cr3, gpa; u64 ept_pte, pte, offset_in_page; unsigned offset; bool bad_pt_ad = false; for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; if (!get_ept_pte(pml4, (u64) &pt[offset], 1, &ept_pte)) { printf("EPT - guest level %d page table is not mapped.\n", l); return; } if (!bad_pt_ad) { bad_pt_ad |= (ept_pte & (EPT_ACCESS_FLAG|EPT_DIRTY_FLAG)) != expected_pt_ad; if (bad_pt_ad) report_fail("EPT - guest level %d page table A=%d/D=%d", l, !!(expected_pt_ad & EPT_ACCESS_FLAG), !!(expected_pt_ad & EPT_DIRTY_FLAG)); } pte = pt[offset]; if (l == 1 || (l < 4 && (pte & PT_PAGE_SIZE_MASK))) break; if (!(pte & PT_PRESENT_MASK)) return; pt = (unsigned long *)(pte & PT_ADDR_MASK); } if (!bad_pt_ad) report_pass("EPT - guest page table structures A=%d/D=%d", !!(expected_pt_ad & EPT_ACCESS_FLAG), !!(expected_pt_ad & EPT_DIRTY_FLAG)); offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; offset_in_page = guest_addr & ((1 << EPT_LEVEL_SHIFT(l)) - 1); gpa = (pt[offset] & PT_ADDR_MASK) | (guest_addr & offset_in_page); if (!get_ept_pte(pml4, gpa, 1, &ept_pte)) { report_fail("EPT - guest physical address is not mapped"); return; } report((ept_pte & (EPT_ACCESS_FLAG | EPT_DIRTY_FLAG)) == expected_gpa_ad, "EPT - guest physical address A=%d/D=%d", !!(expected_gpa_ad & EPT_ACCESS_FLAG), !!(expected_gpa_ad & EPT_DIRTY_FLAG)); } void set_ept_pte(unsigned long *pml4, unsigned long guest_addr, int level, u64 pte_val) { int l; unsigned long *pt = pml4; unsigned offset; assert(level >= 1 && level <= 4); for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; if (l == level) break; assert(pt[offset] & EPT_PRESENT); pt = (unsigned long *)(pt[offset] & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; pt[offset] = pte_val; } static void init_vmcs_ctrl(void) { /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ /* 26.2.1.1 */ vmcs_write(PIN_CONTROLS, ctrl_pin); /* Disable VMEXIT of IO instruction */ vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]); if (ctrl_cpu_rev[0].set & CPU_SECONDARY) { ctrl_cpu[1] = (ctrl_cpu[1] | ctrl_cpu_rev[1].set) & ctrl_cpu_rev[1].clr; vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]); } vmcs_write(CR3_TARGET_COUNT, 0); vmcs_write(VPID, ++vpid_cnt); } static void init_vmcs_host(void) { /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ /* 26.2.1.2 */ vmcs_write(HOST_EFER, rdmsr(MSR_EFER)); /* 26.2.1.3 */ vmcs_write(ENT_CONTROLS, ctrl_enter); vmcs_write(EXI_CONTROLS, ctrl_exit); /* 26.2.2 */ vmcs_write(HOST_CR0, read_cr0()); vmcs_write(HOST_CR3, read_cr3()); vmcs_write(HOST_CR4, read_cr4()); vmcs_write(HOST_SYSENTER_EIP, (u64)(&entry_sysenter)); vmcs_write(HOST_SYSENTER_CS, KERNEL_CS); /* 26.2.3 */ vmcs_write(HOST_SEL_CS, KERNEL_CS); vmcs_write(HOST_SEL_SS, KERNEL_DS); vmcs_write(HOST_SEL_DS, KERNEL_DS); vmcs_write(HOST_SEL_ES, KERNEL_DS); vmcs_write(HOST_SEL_FS, KERNEL_DS); vmcs_write(HOST_SEL_GS, KERNEL_DS); vmcs_write(HOST_SEL_TR, TSS_MAIN); vmcs_write(HOST_BASE_TR, get_gdt_entry_base(get_tss_descr())); vmcs_write(HOST_BASE_GDTR, gdt_descr.base); vmcs_write(HOST_BASE_IDTR, idt_descr.base); vmcs_write(HOST_BASE_FS, 0); vmcs_write(HOST_BASE_GS, rdmsr(MSR_GS_BASE)); /* Set other vmcs area */ vmcs_write(PF_ERROR_MASK, 0); vmcs_write(PF_ERROR_MATCH, 0); vmcs_write(VMCS_LINK_PTR, ~0ul); vmcs_write(VMCS_LINK_PTR_HI, ~0ul); vmcs_write(HOST_RIP, (u64)(&vmx_return)); } static void init_vmcs_guest(void) { gdt_entry_t *tss_descr = get_tss_descr(); /* 26.3 CHECKING AND LOADING GUEST STATE */ ulong guest_cr0, guest_cr4, guest_cr3; /* 26.3.1.1 */ guest_cr0 = read_cr0(); guest_cr4 = read_cr4(); guest_cr3 = read_cr3(); if (ctrl_enter & ENT_GUEST_64) { guest_cr0 |= X86_CR0_PG; guest_cr4 |= X86_CR4_PAE; } if ((ctrl_enter & ENT_GUEST_64) == 0) guest_cr4 &= (~X86_CR4_PCIDE); if (guest_cr0 & X86_CR0_PG) guest_cr0 |= X86_CR0_PE; vmcs_write(GUEST_CR0, guest_cr0); vmcs_write(GUEST_CR3, guest_cr3); vmcs_write(GUEST_CR4, guest_cr4); vmcs_write(GUEST_SYSENTER_CS, KERNEL_CS); vmcs_write(GUEST_SYSENTER_ESP, guest_syscall_stack_top); vmcs_write(GUEST_SYSENTER_EIP, (u64)(&entry_sysenter)); vmcs_write(GUEST_DR7, 0); vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); /* 26.3.1.2 */ vmcs_write(GUEST_SEL_CS, KERNEL_CS); vmcs_write(GUEST_SEL_SS, KERNEL_DS); vmcs_write(GUEST_SEL_DS, KERNEL_DS); vmcs_write(GUEST_SEL_ES, KERNEL_DS); vmcs_write(GUEST_SEL_FS, KERNEL_DS); vmcs_write(GUEST_SEL_GS, KERNEL_DS); vmcs_write(GUEST_SEL_TR, TSS_MAIN); vmcs_write(GUEST_SEL_LDTR, 0); vmcs_write(GUEST_BASE_CS, 0); vmcs_write(GUEST_BASE_ES, 0); vmcs_write(GUEST_BASE_SS, 0); vmcs_write(GUEST_BASE_DS, 0); vmcs_write(GUEST_BASE_FS, 0); vmcs_write(GUEST_BASE_GS, rdmsr(MSR_GS_BASE)); vmcs_write(GUEST_BASE_TR, get_gdt_entry_base(tss_descr)); vmcs_write(GUEST_BASE_LDTR, 0); vmcs_write(GUEST_LIMIT_CS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_DS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_ES, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_SS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_FS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_GS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_LDTR, 0xffff); vmcs_write(GUEST_LIMIT_TR, get_gdt_entry_limit(tss_descr)); vmcs_write(GUEST_AR_CS, 0xa09b); vmcs_write(GUEST_AR_DS, 0xc093); vmcs_write(GUEST_AR_ES, 0xc093); vmcs_write(GUEST_AR_FS, 0xc093); vmcs_write(GUEST_AR_GS, 0xc093); vmcs_write(GUEST_AR_SS, 0xc093); vmcs_write(GUEST_AR_LDTR, 0x82); vmcs_write(GUEST_AR_TR, 0x8b); /* 26.3.1.3 */ vmcs_write(GUEST_BASE_GDTR, gdt_descr.base); vmcs_write(GUEST_BASE_IDTR, idt_descr.base); vmcs_write(GUEST_LIMIT_GDTR, gdt_descr.limit); vmcs_write(GUEST_LIMIT_IDTR, idt_descr.limit); /* 26.3.1.4 */ vmcs_write(GUEST_RIP, (u64)(&guest_entry)); vmcs_write(GUEST_RSP, guest_stack_top); vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); /* 26.3.1.5 */ vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); vmcs_write(GUEST_INTR_STATE, 0); } int init_vmcs(struct vmcs **vmcs) { *vmcs = alloc_page(); (*vmcs)->hdr.revision_id = basic.revision; /* vmclear first to init vmcs */ if (vmcs_clear(*vmcs)) { printf("%s : vmcs_clear error\n", __func__); return 1; } if (make_vmcs_current(*vmcs)) { printf("%s : make_vmcs_current error\n", __func__); return 1; } /* All settings to pin/exit/enter/cpu control fields should be placed here */ ctrl_pin |= PIN_EXTINT | PIN_NMI | PIN_VIRT_NMI; ctrl_exit = EXI_LOAD_EFER | EXI_HOST_64; ctrl_enter = (ENT_LOAD_EFER | ENT_GUEST_64); /* DIsable IO instruction VMEXIT now */ ctrl_cpu[0] &= (~(CPU_IO | CPU_IO_BITMAP)); ctrl_cpu[1] = 0; ctrl_pin = (ctrl_pin | ctrl_pin_rev.set) & ctrl_pin_rev.clr; ctrl_enter = (ctrl_enter | ctrl_enter_rev.set) & ctrl_enter_rev.clr; ctrl_exit = (ctrl_exit | ctrl_exit_rev.set) & ctrl_exit_rev.clr; ctrl_cpu[0] = (ctrl_cpu[0] | ctrl_cpu_rev[0].set) & ctrl_cpu_rev[0].clr; init_vmcs_ctrl(); init_vmcs_host(); init_vmcs_guest(); return 0; } void enable_vmx(void) { bool vmx_enabled = rdmsr(MSR_IA32_FEATURE_CONTROL) & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (!vmx_enabled) { wrmsr(MSR_IA32_FEATURE_CONTROL, FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX | FEATURE_CONTROL_LOCKED); } } static void init_vmx_caps(void) { basic.val = rdmsr(MSR_IA32_VMX_BASIC); ctrl_pin_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PIN : MSR_IA32_VMX_PINBASED_CTLS); ctrl_exit_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_EXIT : MSR_IA32_VMX_EXIT_CTLS); ctrl_enter_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_ENTRY : MSR_IA32_VMX_ENTRY_CTLS); ctrl_cpu_rev[0].val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PROC : MSR_IA32_VMX_PROCBASED_CTLS); if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) != 0) ctrl_cpu_rev[1].val = rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2); else ctrl_cpu_rev[1].val = 0; if ((ctrl_cpu_rev[1].clr & (CPU_EPT | CPU_VPID)) != 0) ept_vpid.val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); else ept_vpid.val = 0; } void init_vmx(u64 *vmxon_region) { ulong fix_cr0_set, fix_cr0_clr; ulong fix_cr4_set, fix_cr4_clr; fix_cr0_set = rdmsr(MSR_IA32_VMX_CR0_FIXED0); fix_cr0_clr = rdmsr(MSR_IA32_VMX_CR0_FIXED1); fix_cr4_set = rdmsr(MSR_IA32_VMX_CR4_FIXED0); fix_cr4_clr = rdmsr(MSR_IA32_VMX_CR4_FIXED1); write_cr0((read_cr0() & fix_cr0_clr) | fix_cr0_set); write_cr4((read_cr4() & fix_cr4_clr) | fix_cr4_set | X86_CR4_VMXE); *vmxon_region = basic.revision; } static void alloc_bsp_vmx_pages(void) { bsp_vmxon_region = alloc_page(); guest_stack_top = (uintptr_t)alloc_page() + PAGE_SIZE; guest_syscall_stack_top = (uintptr_t)alloc_page() + PAGE_SIZE; vmcs_root = alloc_page(); } static void init_bsp_vmx(void) { init_vmx_caps(); alloc_bsp_vmx_pages(); init_vmx(bsp_vmxon_region); } static void do_vmxon_off(void *data) { TEST_ASSERT(!vmx_on()); TEST_ASSERT(!vmx_off()); } static void do_write_feature_control(void *data) { wrmsr(MSR_IA32_FEATURE_CONTROL, 0); } static int test_vmx_feature_control(void) { u64 ia32_feature_control; bool vmx_enabled; bool feature_control_locked; ia32_feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); vmx_enabled = ia32_feature_control & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; feature_control_locked = ia32_feature_control & FEATURE_CONTROL_LOCKED; if (vmx_enabled && feature_control_locked) { printf("VMX enabled and locked by BIOS\n"); return 0; } else if (feature_control_locked) { printf("ERROR: VMX locked out by BIOS!?\n"); return 1; } wrmsr(MSR_IA32_FEATURE_CONTROL, 0); report(test_for_exception(GP_VECTOR, &do_vmxon_off, NULL), "test vmxon with FEATURE_CONTROL cleared"); wrmsr(MSR_IA32_FEATURE_CONTROL, FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX); report(test_for_exception(GP_VECTOR, &do_vmxon_off, NULL), "test vmxon without FEATURE_CONTROL lock"); wrmsr(MSR_IA32_FEATURE_CONTROL, FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX | FEATURE_CONTROL_LOCKED); ia32_feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); vmx_enabled = ia32_feature_control & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; report(vmx_enabled, "test enable VMX in FEATURE_CONTROL"); report(test_for_exception(GP_VECTOR, &do_write_feature_control, NULL), "test FEATURE_CONTROL lock bit"); return !vmx_enabled; } static void write_cr(int cr_number, unsigned long val) { if (!cr_number) write_cr0(val); else write_cr4(val); } static int write_cr_safe(int cr_number, unsigned long val) { if (!cr_number) return write_cr0_safe(val); else return write_cr4_safe(val); } static int test_vmxon_bad_cr(int cr_number, unsigned long orig_cr, unsigned long *flexible_bits) { unsigned long required1, disallowed1, val, bit; int ret, i, expected; if (!cr_number) { required1 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); disallowed1 = ~rdmsr(MSR_IA32_VMX_CR0_FIXED1); } else { required1 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); disallowed1 = ~rdmsr(MSR_IA32_VMX_CR4_FIXED1); } *flexible_bits = 0; for (i = 0; i < BITS_PER_LONG; i++) { bit = BIT(i); /* * Don't touch bits that will affect the current paging mode, * toggling them will send the test into the weeds before it * gets to VMXON. nVMX tests are 64-bit only, so CR4.PAE is * guaranteed to be '1', i.e. PSE is fair game. PKU/PKS are * also fair game as KVM doesn't configure any keys. SMAP and * SMEP are off limits because the page tables have the USER * bit set at all levels. */ if ((cr_number == 0 && (bit == X86_CR0_PE || bit == X86_CR0_PG)) || (cr_number == 4 && (bit == X86_CR4_PAE || bit == X86_CR4_SMAP || bit == X86_CR4_SMEP))) continue; if (!(bit & required1) && !(bit & disallowed1)) { if (!write_cr_safe(cr_number, orig_cr ^ bit)) { *flexible_bits |= bit; write_cr(cr_number, orig_cr); } continue; } assert(!(required1 & disallowed1)); if (required1 & bit) val = orig_cr & ~bit; else val = orig_cr | bit; if (write_cr_safe(cr_number, val)) continue; /* * CR0.PE==0 and CR4.VMXE==0 result in #UD, all other invalid * CR0/CR4 bits result in #GP. Include CR0.PE even though it's * dead code (see above) for completeness. */ if ((cr_number == 0 && bit == X86_CR0_PE) || (cr_number == 4 && bit == X86_CR4_VMXE)) expected = UD_VECTOR; else expected = GP_VECTOR; ret = vmx_on(); report(ret == expected, "VMXON with CR%d bit %d %s should %s, got '%d'", cr_number, i, (required1 & bit) ? "cleared" : "set", expected == UD_VECTOR ? "UD" : "#GP", ret); write_cr(cr_number, orig_cr); if (ret <= 0) return 1; } return 0; } static int test_vmxon(void) { unsigned long orig_cr0, flexible_cr0, orig_cr4, flexible_cr4; int width = cpuid_maxphyaddr(); u64 *vmxon_region; int ret; orig_cr0 = read_cr0(); if (test_vmxon_bad_cr(0, orig_cr0, &flexible_cr0)) return 1; orig_cr4 = read_cr4(); if (test_vmxon_bad_cr(4, orig_cr4, &flexible_cr4)) return 1; /* Unaligned page access */ vmxon_region = (u64 *)((intptr_t)bsp_vmxon_region + 1); ret = __vmxon_safe(vmxon_region); report(ret < 0, "test vmxon with unaligned vmxon region"); if (ret >= 0) return 1; /* gpa bits beyond physical address width are set*/ vmxon_region = (u64 *)((intptr_t)bsp_vmxon_region | ((u64)1 << (width+1))); ret = __vmxon_safe(vmxon_region); report(ret < 0, "test vmxon with bits set beyond physical address width"); if (ret >= 0) return 1; /* invalid revision identifier */ *bsp_vmxon_region = 0xba9da9; ret = vmxon_safe(); report(ret < 0, "test vmxon with invalid revision identifier"); if (ret >= 0) return 1; /* and finally a valid region, with valid-but-tweaked cr0/cr4 */ write_cr0(orig_cr0 ^ flexible_cr0); write_cr4(orig_cr4 ^ flexible_cr4); *bsp_vmxon_region = basic.revision; ret = vmxon_safe(); report(!ret, "test vmxon with valid vmxon region"); write_cr0(orig_cr0); write_cr4(orig_cr4); return ret; } static void test_vmptrld(void) { struct vmcs *vmcs, *tmp_root; int width = cpuid_maxphyaddr(); vmcs = alloc_page(); vmcs->hdr.revision_id = basic.revision; /* Unaligned page access */ tmp_root = (struct vmcs *)((intptr_t)vmcs + 1); report(make_vmcs_current(tmp_root) == 1, "test vmptrld with unaligned vmcs"); /* gpa bits beyond physical address width are set*/ tmp_root = (struct vmcs *)((intptr_t)vmcs | ((u64)1 << (width+1))); report(make_vmcs_current(tmp_root) == 1, "test vmptrld with vmcs address bits set beyond physical address width"); /* Pass VMXON region */ assert(!vmcs_clear(vmcs)); assert(!make_vmcs_current(vmcs)); tmp_root = (struct vmcs *)bsp_vmxon_region; report(make_vmcs_current(tmp_root) == 1, "test vmptrld with vmxon region"); report(vmcs_read(VMX_INST_ERROR) == VMXERR_VMPTRLD_VMXON_POINTER, "test vmptrld with vmxon region vm-instruction error"); report(make_vmcs_current(vmcs) == 0, "test vmptrld with valid vmcs region"); } static void test_vmptrst(void) { int ret; struct vmcs *vmcs1, *vmcs2; vmcs1 = alloc_page(); init_vmcs(&vmcs1); ret = vmcs_save(&vmcs2); report((!ret) && (vmcs1 == vmcs2), "test vmptrst"); } struct vmx_ctl_msr { const char *name; u32 index, true_index; u32 default1; } vmx_ctl_msr[] = { { "MSR_IA32_VMX_PINBASED_CTLS", MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PIN, 0x16 }, { "MSR_IA32_VMX_PROCBASED_CTLS", MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROC, 0x401e172 }, { "MSR_IA32_VMX_PROCBASED_CTLS2", MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2, 0 }, { "MSR_IA32_VMX_EXIT_CTLS", MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT, 0x36dff }, { "MSR_IA32_VMX_ENTRY_CTLS", MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY, 0x11ff }, }; static void test_vmx_caps(void) { u64 val, default1, fixed0, fixed1; union vmx_ctrl_msr ctrl, true_ctrl; unsigned int n; bool ok; printf("\nTest suite: VMX capability reporting\n"); report((basic.revision & (1ul << 31)) == 0 && basic.size > 0 && basic.size <= 4096 && (basic.type == 0 || basic.type == 6) && basic.reserved1 == 0 && basic.reserved2 == 0, "MSR_IA32_VMX_BASIC"); val = rdmsr(MSR_IA32_VMX_MISC); report((!(ctrl_cpu_rev[1].clr & CPU_URG) || val & (1ul << 5)) && ((val >> 16) & 0x1ff) <= 256 && (val & 0x80007e00) == 0, "MSR_IA32_VMX_MISC"); for (n = 0; n < ARRAY_SIZE(vmx_ctl_msr); n++) { ctrl.val = rdmsr(vmx_ctl_msr[n].index); default1 = vmx_ctl_msr[n].default1; ok = (ctrl.set & default1) == default1; ok = ok && (ctrl.set & ~ctrl.clr) == 0; if (ok && basic.ctrl) { true_ctrl.val = rdmsr(vmx_ctl_msr[n].true_index); ok = ctrl.clr == true_ctrl.clr; ok = ok && ctrl.set == (true_ctrl.set | default1); } report(ok, "%s", vmx_ctl_msr[n].name); } fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); report(((fixed0 ^ fixed1) & ~fixed1) == 0, "MSR_IA32_VMX_IA32_VMX_CR0_FIXED0/1"); fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1); report(((fixed0 ^ fixed1) & ~fixed1) == 0, "MSR_IA32_VMX_IA32_VMX_CR4_FIXED0/1"); val = rdmsr(MSR_IA32_VMX_VMCS_ENUM); report((val & VMCS_FIELD_INDEX_MASK) >= 0x2a && (val & 0xfffffffffffffc01Ull) == 0, "MSR_IA32_VMX_VMCS_ENUM"); fixed0 = -1ull; fixed0 &= ~(EPT_CAP_EXEC_ONLY | EPT_CAP_PWL4 | EPT_CAP_PWL5 | EPT_CAP_UC | EPT_CAP_WB | EPT_CAP_2M_PAGE | EPT_CAP_1G_PAGE | EPT_CAP_INVEPT | EPT_CAP_AD_FLAG | EPT_CAP_ADV_EPT_INFO | EPT_CAP_INVEPT_SINGLE | EPT_CAP_INVEPT_ALL | VPID_CAP_INVVPID | VPID_CAP_INVVPID_ADDR | VPID_CAP_INVVPID_CXTGLB | VPID_CAP_INVVPID_ALL | VPID_CAP_INVVPID_CXTLOC); val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); report((val & fixed0) == 0, "MSR_IA32_VMX_EPT_VPID_CAP"); } /* This function can only be called in guest */ void __attribute__((__used__)) hypercall(u32 hypercall_no) { u64 val = 0; val = (hypercall_no & HYPERCALL_MASK) | HYPERCALL_BIT; hypercall_field = val; asm volatile("vmcall\n\t"); } static bool is_hypercall(union exit_reason exit_reason) { return exit_reason.basic == VMX_VMCALL && (hypercall_field & HYPERCALL_BIT); } static int handle_hypercall(void) { ulong hypercall_no; hypercall_no = hypercall_field & HYPERCALL_MASK; hypercall_field = 0; switch (hypercall_no) { case HYPERCALL_VMEXIT: return VMX_TEST_VMEXIT; case HYPERCALL_VMABORT: return VMX_TEST_VMABORT; case HYPERCALL_VMSKIP: return VMX_TEST_VMSKIP; default: printf("ERROR : Invalid hypercall number : %ld\n", hypercall_no); } return VMX_TEST_EXIT; } static void continue_abort(void) { assert(!in_guest); printf("Host was here when guest aborted:\n"); dump_stack(); longjmp(abort_target, 1); abort(); } void __abort_test(void) { if (in_guest) hypercall(HYPERCALL_VMABORT); else longjmp(abort_target, 1); abort(); } static void continue_skip(void) { assert(!in_guest); longjmp(abort_target, 1); abort(); } void test_skip(const char *msg) { printf("%s skipping test: %s\n", in_guest ? "Guest" : "Host", msg); if (in_guest) hypercall(HYPERCALL_VMABORT); else longjmp(abort_target, 1); abort(); } static int exit_handler(union exit_reason exit_reason) { int ret; current->exits++; regs.rflags = vmcs_read(GUEST_RFLAGS); if (is_hypercall(exit_reason)) ret = handle_hypercall(); else ret = current->exit_handler(exit_reason); vmcs_write(GUEST_RFLAGS, regs.rflags); return ret; } /* * Tries to enter the guest, populates @result with VM-Fail, VM-Exit, entered, * etc... */ static noinline void vmx_enter_guest(struct vmentry_result *result) { memset(result, 0, sizeof(*result)); in_guest = 1; asm volatile ( "mov %[HOST_RSP], %%rdi\n\t" "vmwrite %%rsp, %%rdi\n\t" LOAD_GPR_C "cmpb $0, %[launched]\n\t" "jne 1f\n\t" "vmlaunch\n\t" "jmp 2f\n\t" "1: " "vmresume\n\t" "2: " SAVE_GPR_C "pushf\n\t" "pop %%rdi\n\t" "mov %%rdi, %[vm_fail_flags]\n\t" "movl $1, %[vm_fail]\n\t" "jmp 3f\n\t" "vmx_return:\n\t" SAVE_GPR_C "3: \n\t" : [vm_fail]"+m"(result->vm_fail), [vm_fail_flags]"=m"(result->flags) : [launched]"m"(launched), [HOST_RSP]"i"(HOST_RSP) : "rdi", "memory", "cc" ); in_guest = 0; result->vmlaunch = !launched; result->instr = launched ? "vmresume" : "vmlaunch"; result->exit_reason.full = result->vm_fail ? 0xdead : vmcs_read(EXI_REASON); result->entered = !result->vm_fail && !result->exit_reason.failed_vmentry; } static int vmx_run(void) { struct vmentry_result result; u32 ret; while (1) { vmx_enter_guest(&result); if (result.entered) { /* * VMCS isn't in "launched" state if there's been any * entry failure (early or otherwise). */ launched = 1; ret = exit_handler(result.exit_reason); } else if (current->entry_failure_handler) { ret = current->entry_failure_handler(&result); } else { ret = VMX_TEST_EXIT; } switch (ret) { case VMX_TEST_RESUME: continue; case VMX_TEST_VMEXIT: guest_finished = 1; return 0; case VMX_TEST_EXIT: break; default: printf("ERROR : Invalid %s_handler return val %d.\n", result.entered ? "exit" : "entry_failure", ret); break; } if (result.entered) print_vmexit_info(result.exit_reason); else print_vmentry_failure_info(&result); abort(); } } static void run_teardown_step(struct test_teardown_step *step) { step->func(step->data); } static int test_run(struct vmx_test *test) { int r; /* Validate V2 interface. */ if (test->v2) { int ret = 0; if (test->init || test->guest_main || test->exit_handler || test->syscall_handler) { report_fail("V2 test cannot specify V1 callbacks."); ret = 1; } if (ret) return ret; } if (test->name == NULL) test->name = "(no name)"; if (vmx_on()) { printf("%s : vmxon failed.\n", __func__); return 1; } init_vmcs(&(test->vmcs)); /* Directly call test->init is ok here, init_vmcs has done vmcs init, vmclear and vmptrld*/ if (test->init && test->init(test->vmcs) != VMX_TEST_START) goto out; teardown_count = 0; v2_guest_main = NULL; test->exits = 0; current = test; regs = test->guest_regs; vmcs_write(GUEST_RFLAGS, regs.rflags | X86_EFLAGS_FIXED); launched = 0; guest_finished = 0; printf("\nTest suite: %s\n", test->name); r = setjmp(abort_target); if (r) { assert(!in_guest); goto out; } if (test->v2) test->v2(); else vmx_run(); while (teardown_count > 0) run_teardown_step(&teardown_steps[--teardown_count]); if (launched && !guest_finished) report_fail("Guest didn't run to completion."); out: if (vmx_off()) { printf("%s : vmxoff failed.\n", __func__); return 1; } return 0; } /* * Add a teardown step. Executed after the test's main function returns. * Teardown steps executed in reverse order. */ void test_add_teardown(test_teardown_func func, void *data) { struct test_teardown_step *step; TEST_ASSERT_MSG(teardown_count < MAX_TEST_TEARDOWN_STEPS, "There are already %d teardown steps.", teardown_count); step = &teardown_steps[teardown_count++]; step->func = func; step->data = data; } static void __test_set_guest(test_guest_func func) { assert(current->v2); v2_guest_main = func; } /* * Set the target of the first enter_guest call. Can only be called once per * test. Must be called before first enter_guest call. */ void test_set_guest(test_guest_func func) { TEST_ASSERT_MSG(!v2_guest_main, "Already set guest func."); __test_set_guest(func); } /* * Set the target of the enter_guest call and reset the RIP so 'func' will * start from the beginning. This can be called multiple times per test. */ void test_override_guest(test_guest_func func) { __test_set_guest(func); init_vmcs_guest(); } void test_set_guest_finished(void) { guest_finished = 1; } static void check_for_guest_termination(union exit_reason exit_reason) { if (is_hypercall(exit_reason)) { int ret; ret = handle_hypercall(); switch (ret) { case VMX_TEST_VMEXIT: guest_finished = 1; break; case VMX_TEST_VMABORT: continue_abort(); break; case VMX_TEST_VMSKIP: continue_skip(); break; default: printf("ERROR : Invalid handle_hypercall return %d.\n", ret); abort(); } } } /* * Enters the guest (or launches it for the first time). Error to call once the * guest has returned (i.e., run past the end of its guest() function). */ void __enter_guest(u8 abort_flag, struct vmentry_result *result) { TEST_ASSERT_MSG(v2_guest_main, "Never called test_set_guest_func!"); TEST_ASSERT_MSG(!guest_finished, "Called enter_guest() after guest returned."); vmx_enter_guest(result); if (result->vm_fail) { if (abort_flag & ABORT_ON_EARLY_VMENTRY_FAIL) goto do_abort; return; } if (result->exit_reason.failed_vmentry) { if ((abort_flag & ABORT_ON_INVALID_GUEST_STATE) || result->exit_reason.basic != VMX_FAIL_STATE) goto do_abort; return; } launched = 1; check_for_guest_termination(result->exit_reason); return; do_abort: print_vmentry_failure_info(result); abort(); } void enter_guest_with_bad_controls(void) { struct vmentry_result result; TEST_ASSERT_MSG(v2_guest_main, "Never called test_set_guest_func!"); TEST_ASSERT_MSG(!guest_finished, "Called enter_guest() after guest returned."); __enter_guest(ABORT_ON_INVALID_GUEST_STATE, &result); report(result.vm_fail, "VM-Fail occurred as expected"); report((result.flags & VMX_ENTRY_FLAGS) == X86_EFLAGS_ZF, "FLAGS set correctly on VM-Fail"); report(vmcs_read(VMX_INST_ERROR) == VMXERR_ENTRY_INVALID_CONTROL_FIELD, "VM-Inst Error # is %d (VM entry with invalid control field(s))", VMXERR_ENTRY_INVALID_CONTROL_FIELD); } void enter_guest(void) { struct vmentry_result result; __enter_guest(ABORT_ON_EARLY_VMENTRY_FAIL | ABORT_ON_INVALID_GUEST_STATE, &result); } extern struct vmx_test vmx_tests[]; static bool test_wanted(const char *name, const char *filters[], int filter_count) { int i; bool positive = false; bool match = false; char clean_name[strlen(name) + 1]; char *c; const char *n; printf("filter = %s, test = %s\n", filters[0], name); /* Replace spaces with underscores. */ n = name; c = &clean_name[0]; do *c++ = (*n == ' ') ? '_' : *n; while (*n++); for (i = 0; i < filter_count; i++) { const char *filter = filters[i]; if (filter[0] == '-') { if (simple_glob(clean_name, filter + 1)) return false; } else { positive = true; match |= simple_glob(clean_name, filter); } } if (!positive || match) { matched++; return true; } else { return false; } } int main(int argc, const char *argv[]) { int i = 0; setup_vm(); hypercall_field = 0; /* We want xAPIC mode to test MMIO passthrough from L1 (us) to L2. */ smp_reset_apic(); argv++; argc--; if (!this_cpu_has(X86_FEATURE_VMX)) { printf("WARNING: vmx not supported, add '-cpu host'\n"); goto exit; } init_bsp_vmx(); if (test_wanted("test_vmx_feature_control", argv, argc)) { /* Sets MSR_IA32_FEATURE_CONTROL to 0x5 */ if (test_vmx_feature_control() != 0) goto exit; } else { enable_vmx(); } if (test_wanted("test_vmxon", argv, argc)) { /* Enables VMX */ if (test_vmxon() != 0) goto exit; } else { if (vmx_on()) { report_fail("vmxon"); goto exit; } } if (test_wanted("test_vmptrld", argv, argc)) test_vmptrld(); if (test_wanted("test_vmclear", argv, argc)) test_vmclear(); if (test_wanted("test_vmptrst", argv, argc)) test_vmptrst(); if (test_wanted("test_vmwrite_vmread", argv, argc)) test_vmwrite_vmread(); if (test_wanted("test_vmcs_high", argv, argc)) test_vmcs_high(); if (test_wanted("test_vmcs_lifecycle", argv, argc)) test_vmcs_lifecycle(); if (test_wanted("test_vmx_caps", argv, argc)) test_vmx_caps(); if (test_wanted("test_vmread_flags_touch", argv, argc)) test_vmread_flags_touch(); if (test_wanted("test_vmwrite_flags_touch", argv, argc)) test_vmwrite_flags_touch(); /* Balance vmxon from test_vmxon. */ vmx_off(); for (; vmx_tests[i].name != NULL; i++) { if (!test_wanted(vmx_tests[i].name, argv, argc)) continue; if (test_run(&vmx_tests[i])) goto exit; } if (!matched) report(matched, "command line didn't match any tests!"); exit: return report_summary(); }