/* * x86/vmx.c : Framework for testing nested virtualization * This is a framework to test nested VMX for KVM, which * started as a project of GSoC 2013. All test cases should * be located in x86/vmx_tests.c and framework related * functions should be in this file. * * How to write test cases? * Add callbacks of test suite in variant "vmx_tests". You can * write: * 1. init function used for initializing test suite * 2. main function for codes running in L2 guest, * 3. exit_handler to handle vmexit of L2 to L1 * 4. syscall handler to handle L2 syscall vmexit * 5. vmenter fail handler to handle direct failure of vmenter * 6. guest_regs is loaded when vmenter and saved when * vmexit, you can read and set it in exit_handler * If no special function is needed for a test suite, use * coressponding basic_* functions as callback. More handlers * can be added to "vmx_tests", see details of "struct vmx_test" * and function test_run(). * * Currently, vmx test framework only set up one VCPU and one * concurrent guest test environment with same paging for L2 and * L1. For usage of EPT, only 1:1 mapped paging is used from VFN * to PFN. * * Author : Arthur Chunqi Li */ #include "libcflat.h" #include "processor.h" #include "vm.h" #include "desc.h" #include "vmx.h" #include "msr.h" #include "smp.h" #include "io.h" u64 *vmxon_region; struct vmcs *vmcs_root; u32 vpid_cnt; void *guest_stack, *guest_syscall_stack; u32 ctrl_pin, ctrl_enter, ctrl_exit, ctrl_cpu[2]; struct regs regs; struct vmx_test *current; u64 hypercall_field; bool launched; union vmx_basic basic; union vmx_ctrl_msr ctrl_pin_rev; union vmx_ctrl_msr ctrl_cpu_rev[2]; union vmx_ctrl_msr ctrl_exit_rev; union vmx_ctrl_msr ctrl_enter_rev; union vmx_ept_vpid ept_vpid; extern struct descriptor_table_ptr gdt64_desc; extern struct descriptor_table_ptr idt_descr; extern struct descriptor_table_ptr tss_descr; extern void *vmx_return; extern void *entry_sysenter; extern void *guest_entry; static volatile u32 stage; void vmx_set_test_stage(u32 s) { barrier(); stage = s; barrier(); } u32 vmx_get_test_stage(void) { u32 s; barrier(); s = stage; barrier(); return s; } void vmx_inc_test_stage(void) { barrier(); stage++; barrier(); } static int make_vmcs_current(struct vmcs *vmcs) { bool ret; u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; asm volatile ("push %1; popf; vmptrld %2; setbe %0" : "=q" (ret) : "q" (rflags), "m" (vmcs) : "cc"); return ret; } /* entry_sysenter */ asm( ".align 4, 0x90\n\t" ".globl entry_sysenter\n\t" "entry_sysenter:\n\t" SAVE_GPR " and $0xf, %rax\n\t" " mov %rax, %rdi\n\t" " call syscall_handler\n\t" LOAD_GPR " vmresume\n\t" ); static void __attribute__((__used__)) syscall_handler(u64 syscall_no) { if (current->syscall_handler) current->syscall_handler(syscall_no); } static inline int vmx_on() { bool ret; u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; asm volatile ("push %1; popf; vmxon %2; setbe %0\n\t" : "=q" (ret) : "q" (rflags), "m" (vmxon_region) : "cc"); return ret; } static inline int vmx_off() { bool ret; u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; asm volatile("push %1; popf; vmxoff; setbe %0\n\t" : "=q"(ret) : "q" (rflags) : "cc"); return ret; } void print_vmexit_info() { u64 guest_rip, guest_rsp; ulong reason = vmcs_read(EXI_REASON) & 0xff; ulong exit_qual = vmcs_read(EXI_QUALIFICATION); guest_rip = vmcs_read(GUEST_RIP); guest_rsp = vmcs_read(GUEST_RSP); printf("VMEXIT info:\n"); printf("\tvmexit reason = %ld\n", reason); printf("\texit qualification = 0x%lx\n", exit_qual); printf("\tBit 31 of reason = %lx\n", (vmcs_read(EXI_REASON) >> 31) & 1); printf("\tguest_rip = 0x%lx\n", guest_rip); printf("\tRAX=0x%lx RBX=0x%lx RCX=0x%lx RDX=0x%lx\n", regs.rax, regs.rbx, regs.rcx, regs.rdx); printf("\tRSP=0x%lx RBP=0x%lx RSI=0x%lx RDI=0x%lx\n", guest_rsp, regs.rbp, regs.rsi, regs.rdi); printf("\tR8 =0x%lx R9 =0x%lx R10=0x%lx R11=0x%lx\n", regs.r8, regs.r9, regs.r10, regs.r11); printf("\tR12=0x%lx R13=0x%lx R14=0x%lx R15=0x%lx\n", regs.r12, regs.r13, regs.r14, regs.r15); } void print_vmentry_failure_info(struct vmentry_failure *failure) { if (failure->early) { printf("Early %s failure: ", failure->instr); switch (failure->flags & VMX_ENTRY_FLAGS) { case X86_EFLAGS_ZF: printf("current-VMCS pointer is not valid.\n"); break; case X86_EFLAGS_CF: printf("error number is %ld. See Intel 30.4.\n", vmcs_read(VMX_INST_ERROR)); break; default: printf("unexpected flags %lx!\n", failure->flags); } } else { u64 reason = vmcs_read(EXI_REASON); u64 qual = vmcs_read(EXI_QUALIFICATION); printf("Non-early %s failure (reason=0x%lx, qual=0x%lx): ", failure->instr, reason, qual); switch (reason & 0xff) { case VMX_FAIL_STATE: printf("invalid guest state\n"); break; case VMX_FAIL_MSR: printf("MSR loading\n"); break; case VMX_FAIL_MCHECK: printf("machine-check event\n"); break; default: printf("unexpected basic exit reason %ld\n", reason & 0xff); } if (!(reason & VMX_ENTRY_FAILURE)) printf("\tVMX_ENTRY_FAILURE BIT NOT SET!\n"); if (reason & 0x7fff0000) printf("\tRESERVED BITS SET!\n"); } } static void test_vmclear(void) { struct vmcs *tmp_root; int width = cpuid_maxphyaddr(); /* * Note- The tests below do not necessarily have a * valid VMCS, but that's ok since the invalid vmcs * is only used for a specific test and is discarded * without touching its contents */ /* Unaligned page access */ tmp_root = (struct vmcs *)((intptr_t)vmcs_root + 1); report("test vmclear with unaligned vmcs", vmcs_clear(tmp_root) == 1); /* gpa bits beyond physical address width are set*/ tmp_root = (struct vmcs *)((intptr_t)vmcs_root | ((u64)1 << (width+1))); report("test vmclear with vmcs address bits set beyond physical address width", vmcs_clear(tmp_root) == 1); /* Pass VMXON region */ tmp_root = (struct vmcs *)vmxon_region; report("test vmclear with vmxon region", vmcs_clear(tmp_root) == 1); /* Valid VMCS */ report("test vmclear with valid vmcs region", vmcs_clear(vmcs_root) == 0); } static void test_vmxoff(void) { int ret; ret = vmx_off(); report("test vmxoff", !ret); } static void __attribute__((__used__)) guest_main(void) { current->guest_main(); } /* guest_entry */ asm( ".align 4, 0x90\n\t" ".globl entry_guest\n\t" "guest_entry:\n\t" " call guest_main\n\t" " mov $1, %edi\n\t" " call hypercall\n\t" ); /* EPT paging structure related functions */ /* split_large_ept_entry: Split a 2M/1G large page into 512 smaller PTEs. @ptep : large page table entry to split @level : level of ptep (2 or 3) */ static void split_large_ept_entry(unsigned long *ptep, int level) { unsigned long *new_pt; unsigned long gpa; unsigned long pte; unsigned long prototype; int i; pte = *ptep; assert(pte & EPT_PRESENT); assert(pte & EPT_LARGE_PAGE); assert(level == 2 || level == 3); new_pt = alloc_page(); assert(new_pt); memset(new_pt, 0, PAGE_SIZE); prototype = pte & ~EPT_ADDR_MASK; if (level == 2) prototype &= ~EPT_LARGE_PAGE; gpa = pte & EPT_ADDR_MASK; for (i = 0; i < EPT_PGDIR_ENTRIES; i++) { new_pt[i] = prototype | gpa; gpa += 1ul << EPT_LEVEL_SHIFT(level - 1); } pte &= ~EPT_LARGE_PAGE; pte &= ~EPT_ADDR_MASK; pte |= virt_to_phys(new_pt); *ptep = pte; } /* install_ept_entry : Install a page to a given level in EPT @pml4 : addr of pml4 table @pte_level : level of PTE to set @guest_addr : physical address of guest @pte : pte value to set @pt_page : address of page table, NULL for a new page */ void install_ept_entry(unsigned long *pml4, int pte_level, unsigned long guest_addr, unsigned long pte, unsigned long *pt_page) { int level; unsigned long *pt = pml4; unsigned offset; for (level = EPT_PAGE_LEVEL; level > pte_level; --level) { offset = (guest_addr >> EPT_LEVEL_SHIFT(level)) & EPT_PGDIR_MASK; if (!(pt[offset] & (EPT_PRESENT))) { unsigned long *new_pt = pt_page; if (!new_pt) new_pt = alloc_page(); else pt_page = 0; memset(new_pt, 0, PAGE_SIZE); pt[offset] = virt_to_phys(new_pt) | EPT_RA | EPT_WA | EPT_EA; } else if (pt[offset] & EPT_LARGE_PAGE) split_large_ept_entry(&pt[offset], level); pt = phys_to_virt(pt[offset] & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(level)) & EPT_PGDIR_MASK; pt[offset] = pte; } /* Map a page, @perm is the permission of the page */ void install_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 1, guest_addr, (phys & PAGE_MASK) | perm, 0); } /* Map a 1G-size page */ void install_1g_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 3, guest_addr, (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); } /* Map a 2M-size page */ void install_2m_ept(unsigned long *pml4, unsigned long phys, unsigned long guest_addr, u64 perm) { install_ept_entry(pml4, 2, guest_addr, (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); } /* setup_ept_range : Setup a range of 1:1 mapped page to EPT paging structure. @start : start address of guest page @len : length of address to be mapped @map_1g : whether 1G page map is used @map_2m : whether 2M page map is used @perm : permission for every page */ void setup_ept_range(unsigned long *pml4, unsigned long start, unsigned long len, int map_1g, int map_2m, u64 perm) { u64 phys = start; u64 max = (u64)len + (u64)start; if (map_1g) { while (phys + PAGE_SIZE_1G <= max) { install_1g_ept(pml4, phys, phys, perm); phys += PAGE_SIZE_1G; } } if (map_2m) { while (phys + PAGE_SIZE_2M <= max) { install_2m_ept(pml4, phys, phys, perm); phys += PAGE_SIZE_2M; } } while (phys + PAGE_SIZE <= max) { install_ept(pml4, phys, phys, perm); phys += PAGE_SIZE; } } /* get_ept_pte : Get the PTE of a given level in EPT, @level == 1 means get the latest level*/ unsigned long get_ept_pte(unsigned long *pml4, unsigned long guest_addr, int level) { int l; unsigned long *pt = pml4, pte; unsigned offset; if (level < 1 || level > 3) return -1; for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; pte = pt[offset]; if (!(pte & (EPT_PRESENT))) return 0; if (l == level) break; if (l < 4 && (pte & EPT_LARGE_PAGE)) return pte; pt = (unsigned long *)(pte & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; pte = pt[offset]; return pte; } void ept_sync(int type, u64 eptp) { switch (type) { case INVEPT_SINGLE: if (ept_vpid.val & EPT_CAP_INVEPT_SINGLE) { invept(INVEPT_SINGLE, eptp); break; } /* else fall through */ case INVEPT_GLOBAL: if (ept_vpid.val & EPT_CAP_INVEPT_ALL) { invept(INVEPT_GLOBAL, eptp); break; } /* else fall through */ default: printf("WARNING: invept is not supported!\n"); } } int set_ept_pte(unsigned long *pml4, unsigned long guest_addr, int level, u64 pte_val) { int l; unsigned long *pt = pml4; unsigned offset; if (level < 1 || level > 3) return -1; for (l = EPT_PAGE_LEVEL; ; --l) { offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; if (l == level) break; if (!(pt[offset] & (EPT_PRESENT))) return -1; pt = (unsigned long *)(pt[offset] & EPT_ADDR_MASK); } offset = (guest_addr >> EPT_LEVEL_SHIFT(l)) & EPT_PGDIR_MASK; pt[offset] = pte_val; return 0; } void vpid_sync(int type, u16 vpid) { switch(type) { case INVVPID_SINGLE: if (ept_vpid.val & VPID_CAP_INVVPID_SINGLE) { invvpid(INVVPID_SINGLE, vpid, 0); break; } case INVVPID_ALL: if (ept_vpid.val & VPID_CAP_INVVPID_ALL) { invvpid(INVVPID_ALL, vpid, 0); break; } default: printf("WARNING: invvpid is not supported\n"); } } static void init_vmcs_ctrl(void) { /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ /* 26.2.1.1 */ vmcs_write(PIN_CONTROLS, ctrl_pin); /* Disable VMEXIT of IO instruction */ vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]); if (ctrl_cpu_rev[0].set & CPU_SECONDARY) { ctrl_cpu[1] = (ctrl_cpu[1] | ctrl_cpu_rev[1].set) & ctrl_cpu_rev[1].clr; vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]); } vmcs_write(CR3_TARGET_COUNT, 0); vmcs_write(VPID, ++vpid_cnt); } static void init_vmcs_host(void) { /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ /* 26.2.1.2 */ vmcs_write(HOST_EFER, rdmsr(MSR_EFER)); /* 26.2.1.3 */ vmcs_write(ENT_CONTROLS, ctrl_enter); vmcs_write(EXI_CONTROLS, ctrl_exit); /* 26.2.2 */ vmcs_write(HOST_CR0, read_cr0()); vmcs_write(HOST_CR3, read_cr3()); vmcs_write(HOST_CR4, read_cr4()); vmcs_write(HOST_SYSENTER_EIP, (u64)(&entry_sysenter)); vmcs_write(HOST_SYSENTER_CS, KERNEL_CS); /* 26.2.3 */ vmcs_write(HOST_SEL_CS, KERNEL_CS); vmcs_write(HOST_SEL_SS, KERNEL_DS); vmcs_write(HOST_SEL_DS, KERNEL_DS); vmcs_write(HOST_SEL_ES, KERNEL_DS); vmcs_write(HOST_SEL_FS, KERNEL_DS); vmcs_write(HOST_SEL_GS, KERNEL_DS); vmcs_write(HOST_SEL_TR, TSS_MAIN); vmcs_write(HOST_BASE_TR, tss_descr.base); vmcs_write(HOST_BASE_GDTR, gdt64_desc.base); vmcs_write(HOST_BASE_IDTR, idt_descr.base); vmcs_write(HOST_BASE_FS, 0); vmcs_write(HOST_BASE_GS, 0); /* Set other vmcs area */ vmcs_write(PF_ERROR_MASK, 0); vmcs_write(PF_ERROR_MATCH, 0); vmcs_write(VMCS_LINK_PTR, ~0ul); vmcs_write(VMCS_LINK_PTR_HI, ~0ul); vmcs_write(HOST_RIP, (u64)(&vmx_return)); } static void init_vmcs_guest(void) { /* 26.3 CHECKING AND LOADING GUEST STATE */ ulong guest_cr0, guest_cr4, guest_cr3; /* 26.3.1.1 */ guest_cr0 = read_cr0(); guest_cr4 = read_cr4(); guest_cr3 = read_cr3(); if (ctrl_enter & ENT_GUEST_64) { guest_cr0 |= X86_CR0_PG; guest_cr4 |= X86_CR4_PAE; } if ((ctrl_enter & ENT_GUEST_64) == 0) guest_cr4 &= (~X86_CR4_PCIDE); if (guest_cr0 & X86_CR0_PG) guest_cr0 |= X86_CR0_PE; vmcs_write(GUEST_CR0, guest_cr0); vmcs_write(GUEST_CR3, guest_cr3); vmcs_write(GUEST_CR4, guest_cr4); vmcs_write(GUEST_SYSENTER_CS, KERNEL_CS); vmcs_write(GUEST_SYSENTER_ESP, (u64)(guest_syscall_stack + PAGE_SIZE - 1)); vmcs_write(GUEST_SYSENTER_EIP, (u64)(&entry_sysenter)); vmcs_write(GUEST_DR7, 0); vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); /* 26.3.1.2 */ vmcs_write(GUEST_SEL_CS, KERNEL_CS); vmcs_write(GUEST_SEL_SS, KERNEL_DS); vmcs_write(GUEST_SEL_DS, KERNEL_DS); vmcs_write(GUEST_SEL_ES, KERNEL_DS); vmcs_write(GUEST_SEL_FS, KERNEL_DS); vmcs_write(GUEST_SEL_GS, KERNEL_DS); vmcs_write(GUEST_SEL_TR, TSS_MAIN); vmcs_write(GUEST_SEL_LDTR, 0); vmcs_write(GUEST_BASE_CS, 0); vmcs_write(GUEST_BASE_ES, 0); vmcs_write(GUEST_BASE_SS, 0); vmcs_write(GUEST_BASE_DS, 0); vmcs_write(GUEST_BASE_FS, 0); vmcs_write(GUEST_BASE_GS, 0); vmcs_write(GUEST_BASE_TR, tss_descr.base); vmcs_write(GUEST_BASE_LDTR, 0); vmcs_write(GUEST_LIMIT_CS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_DS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_ES, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_SS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_FS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_GS, 0xFFFFFFFF); vmcs_write(GUEST_LIMIT_LDTR, 0xffff); vmcs_write(GUEST_LIMIT_TR, tss_descr.limit); vmcs_write(GUEST_AR_CS, 0xa09b); vmcs_write(GUEST_AR_DS, 0xc093); vmcs_write(GUEST_AR_ES, 0xc093); vmcs_write(GUEST_AR_FS, 0xc093); vmcs_write(GUEST_AR_GS, 0xc093); vmcs_write(GUEST_AR_SS, 0xc093); vmcs_write(GUEST_AR_LDTR, 0x82); vmcs_write(GUEST_AR_TR, 0x8b); /* 26.3.1.3 */ vmcs_write(GUEST_BASE_GDTR, gdt64_desc.base); vmcs_write(GUEST_BASE_IDTR, idt_descr.base); vmcs_write(GUEST_LIMIT_GDTR, gdt64_desc.limit); vmcs_write(GUEST_LIMIT_IDTR, idt_descr.limit); /* 26.3.1.4 */ vmcs_write(GUEST_RIP, (u64)(&guest_entry)); vmcs_write(GUEST_RSP, (u64)(guest_stack + PAGE_SIZE - 1)); vmcs_write(GUEST_RFLAGS, 0x2); /* 26.3.1.5 */ vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); vmcs_write(GUEST_INTR_STATE, 0); } static int init_vmcs(struct vmcs **vmcs) { *vmcs = alloc_page(); memset(*vmcs, 0, PAGE_SIZE); (*vmcs)->revision_id = basic.revision; /* vmclear first to init vmcs */ if (vmcs_clear(*vmcs)) { printf("%s : vmcs_clear error\n", __func__); return 1; } if (make_vmcs_current(*vmcs)) { printf("%s : make_vmcs_current error\n", __func__); return 1; } /* All settings to pin/exit/enter/cpu control fields should be placed here */ ctrl_pin |= PIN_EXTINT | PIN_NMI | PIN_VIRT_NMI; ctrl_exit = EXI_LOAD_EFER | EXI_HOST_64; ctrl_enter = (ENT_LOAD_EFER | ENT_GUEST_64); /* DIsable IO instruction VMEXIT now */ ctrl_cpu[0] &= (~(CPU_IO | CPU_IO_BITMAP)); ctrl_cpu[1] = 0; ctrl_pin = (ctrl_pin | ctrl_pin_rev.set) & ctrl_pin_rev.clr; ctrl_enter = (ctrl_enter | ctrl_enter_rev.set) & ctrl_enter_rev.clr; ctrl_exit = (ctrl_exit | ctrl_exit_rev.set) & ctrl_exit_rev.clr; ctrl_cpu[0] = (ctrl_cpu[0] | ctrl_cpu_rev[0].set) & ctrl_cpu_rev[0].clr; init_vmcs_ctrl(); init_vmcs_host(); init_vmcs_guest(); return 0; } static void init_vmx(void) { ulong fix_cr0_set, fix_cr0_clr; ulong fix_cr4_set, fix_cr4_clr; vmxon_region = alloc_page(); memset(vmxon_region, 0, PAGE_SIZE); fix_cr0_set = rdmsr(MSR_IA32_VMX_CR0_FIXED0); fix_cr0_clr = rdmsr(MSR_IA32_VMX_CR0_FIXED1); fix_cr4_set = rdmsr(MSR_IA32_VMX_CR4_FIXED0); fix_cr4_clr = rdmsr(MSR_IA32_VMX_CR4_FIXED1); basic.val = rdmsr(MSR_IA32_VMX_BASIC); ctrl_pin_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PIN : MSR_IA32_VMX_PINBASED_CTLS); ctrl_exit_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_EXIT : MSR_IA32_VMX_EXIT_CTLS); ctrl_enter_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_ENTRY : MSR_IA32_VMX_ENTRY_CTLS); ctrl_cpu_rev[0].val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PROC : MSR_IA32_VMX_PROCBASED_CTLS); if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) != 0) ctrl_cpu_rev[1].val = rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2); else ctrl_cpu_rev[1].val = 0; if ((ctrl_cpu_rev[1].clr & (CPU_EPT | CPU_VPID)) != 0) ept_vpid.val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); else ept_vpid.val = 0; write_cr0((read_cr0() & fix_cr0_clr) | fix_cr0_set); write_cr4((read_cr4() & fix_cr4_clr) | fix_cr4_set | X86_CR4_VMXE); *vmxon_region = basic.revision; guest_stack = alloc_page(); memset(guest_stack, 0, PAGE_SIZE); guest_syscall_stack = alloc_page(); memset(guest_syscall_stack, 0, PAGE_SIZE); } static void do_vmxon_off(void *data) { vmx_on(); vmx_off(); } static void do_write_feature_control(void *data) { wrmsr(MSR_IA32_FEATURE_CONTROL, 0); } static int test_vmx_feature_control(void) { u64 ia32_feature_control; bool vmx_enabled; ia32_feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); vmx_enabled = ((ia32_feature_control & 0x5) == 0x5); if ((ia32_feature_control & 0x5) == 0x5) { printf("VMX enabled and locked by BIOS\n"); return 0; } else if (ia32_feature_control & 0x1) { printf("ERROR: VMX locked out by BIOS!?\n"); return 1; } wrmsr(MSR_IA32_FEATURE_CONTROL, 0); report("test vmxon with FEATURE_CONTROL cleared", test_for_exception(GP_VECTOR, &do_vmxon_off, NULL)); wrmsr(MSR_IA32_FEATURE_CONTROL, 0x4); report("test vmxon without FEATURE_CONTROL lock", test_for_exception(GP_VECTOR, &do_vmxon_off, NULL)); wrmsr(MSR_IA32_FEATURE_CONTROL, 0x5); vmx_enabled = ((rdmsr(MSR_IA32_FEATURE_CONTROL) & 0x5) == 0x5); report("test enable VMX in FEATURE_CONTROL", vmx_enabled); report("test FEATURE_CONTROL lock bit", test_for_exception(GP_VECTOR, &do_write_feature_control, NULL)); return !vmx_enabled; } static int test_vmxon(void) { int ret, ret1; u64 *tmp_region = vmxon_region; int width = cpuid_maxphyaddr(); /* Unaligned page access */ vmxon_region = (u64 *)((intptr_t)vmxon_region + 1); ret1 = vmx_on(); report("test vmxon with unaligned vmxon region", ret1); if (!ret1) { ret = 1; goto out; } /* gpa bits beyond physical address width are set*/ vmxon_region = (u64 *)((intptr_t)tmp_region | ((u64)1 << (width+1))); ret1 = vmx_on(); report("test vmxon with bits set beyond physical address width", ret1); if (!ret1) { ret = 1; goto out; } /* invalid revision indentifier */ vmxon_region = tmp_region; *vmxon_region = 0xba9da9; ret1 = vmx_on(); report("test vmxon with invalid revision identifier", ret1); if (!ret1) { ret = 1; goto out; } /* and finally a valid region */ *vmxon_region = basic.revision; ret = vmx_on(); report("test vmxon with valid vmxon region", !ret); out: return ret; } static void test_vmptrld(void) { struct vmcs *vmcs, *tmp_root; int width = cpuid_maxphyaddr(); vmcs = alloc_page(); vmcs->revision_id = basic.revision; /* Unaligned page access */ tmp_root = (struct vmcs *)((intptr_t)vmcs + 1); report("test vmptrld with unaligned vmcs", make_vmcs_current(tmp_root) == 1); /* gpa bits beyond physical address width are set*/ tmp_root = (struct vmcs *)((intptr_t)vmcs | ((u64)1 << (width+1))); report("test vmptrld with vmcs address bits set beyond physical address width", make_vmcs_current(tmp_root) == 1); /* Pass VMXON region */ tmp_root = (struct vmcs *)vmxon_region; report("test vmptrld with vmxon region", make_vmcs_current(tmp_root) == 1); report("test vmptrld with valid vmcs region", make_vmcs_current(vmcs) == 0); } static void test_vmptrst(void) { int ret; struct vmcs *vmcs1, *vmcs2; vmcs1 = alloc_page(); memset(vmcs1, 0, PAGE_SIZE); init_vmcs(&vmcs1); ret = vmcs_save(&vmcs2); report("test vmptrst", (!ret) && (vmcs1 == vmcs2)); } struct vmx_ctl_msr { const char *name; u32 index, true_index; u32 default1; } vmx_ctl_msr[] = { { "MSR_IA32_VMX_PINBASED_CTLS", MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PIN, 0x16 }, { "MSR_IA32_VMX_PROCBASED_CTLS", MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROC, 0x401e172 }, { "MSR_IA32_VMX_PROCBASED_CTLS2", MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2, 0 }, { "MSR_IA32_VMX_EXIT_CTLS", MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT, 0x36dff }, { "MSR_IA32_VMX_ENTRY_CTLS", MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY, 0x11ff }, }; static void test_vmx_caps(void) { u64 val, default1, fixed0, fixed1; union vmx_ctrl_msr ctrl, true_ctrl; unsigned int n; bool ok; printf("\nTest suite: VMX capability reporting\n"); report("MSR_IA32_VMX_BASIC", (basic.revision & (1ul << 31)) == 0 && basic.size > 0 && basic.size <= 4096 && (basic.type == 0 || basic.type == 6) && basic.reserved1 == 0 && basic.reserved2 == 0); val = rdmsr(MSR_IA32_VMX_MISC); report("MSR_IA32_VMX_MISC", (!(ctrl_cpu_rev[1].clr & CPU_URG) || val & (1ul << 5)) && ((val >> 16) & 0x1ff) <= 256 && (val & 0xc0007e00) == 0); for (n = 0; n < ARRAY_SIZE(vmx_ctl_msr); n++) { ctrl.val = rdmsr(vmx_ctl_msr[n].index); default1 = vmx_ctl_msr[n].default1; ok = (ctrl.set & default1) == default1; ok = ok && (ctrl.set & ~ctrl.clr) == 0; if (ok && basic.ctrl) { true_ctrl.val = rdmsr(vmx_ctl_msr[n].true_index); ok = ctrl.clr == true_ctrl.clr; ok = ok && ctrl.set == (true_ctrl.set | default1); } report(vmx_ctl_msr[n].name, ok); } fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); report("MSR_IA32_VMX_IA32_VMX_CR0_FIXED0/1", ((fixed0 ^ fixed1) & ~fixed1) == 0); fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1); report("MSR_IA32_VMX_IA32_VMX_CR4_FIXED0/1", ((fixed0 ^ fixed1) & ~fixed1) == 0); val = rdmsr(MSR_IA32_VMX_VMCS_ENUM); report("MSR_IA32_VMX_VMCS_ENUM", (val & 0x3e) >= 0x2a && (val & 0xfffffffffffffc01Ull) == 0); val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); report("MSR_IA32_VMX_EPT_VPID_CAP", (val & 0xfffff07ef9eebebeUll) == 0); } /* This function can only be called in guest */ static void __attribute__((__used__)) hypercall(u32 hypercall_no) { u64 val = 0; val = (hypercall_no & HYPERCALL_MASK) | HYPERCALL_BIT; hypercall_field = val; asm volatile("vmcall\n\t"); } static bool is_hypercall() { ulong reason, hyper_bit; reason = vmcs_read(EXI_REASON) & 0xff; hyper_bit = hypercall_field & HYPERCALL_BIT; if (reason == VMX_VMCALL && hyper_bit) return true; return false; } static int handle_hypercall() { ulong hypercall_no; hypercall_no = hypercall_field & HYPERCALL_MASK; hypercall_field = 0; switch (hypercall_no) { case HYPERCALL_VMEXIT: return VMX_TEST_VMEXIT; default: printf("ERROR : Invalid hypercall number : %ld\n", hypercall_no); } return VMX_TEST_EXIT; } static int exit_handler() { int ret; current->exits++; regs.rflags = vmcs_read(GUEST_RFLAGS); if (is_hypercall()) ret = handle_hypercall(); else ret = current->exit_handler(); vmcs_write(GUEST_RFLAGS, regs.rflags); return ret; } /* * Called if vmlaunch or vmresume fails. * @early - failure due to "VMX controls and host-state area" (26.2) * @vmlaunch - was this a vmlaunch or vmresume * @rflags - host rflags */ static int entry_failure_handler(struct vmentry_failure *failure) { if (current->entry_failure_handler) return current->entry_failure_handler(failure); else return VMX_TEST_EXIT; } static int vmx_run() { unsigned long host_rflags; while (1) { u32 ret; u32 fail = 0; bool entered; struct vmentry_failure failure; asm volatile ( "mov %[HOST_RSP], %%rdi\n\t" "vmwrite %%rsp, %%rdi\n\t" LOAD_GPR_C "cmpl $0, %[launched]\n\t" "jne 1f\n\t" "vmlaunch\n\t" "jmp 2f\n\t" "1: " "vmresume\n\t" "2: " SAVE_GPR_C "pushf\n\t" "pop %%rdi\n\t" "mov %%rdi, %[host_rflags]\n\t" "movl $1, %[fail]\n\t" "jmp 3f\n\t" "vmx_return:\n\t" SAVE_GPR_C "3: \n\t" : [fail]"+m"(fail), [host_rflags]"=m"(host_rflags) : [launched]"m"(launched), [HOST_RSP]"i"(HOST_RSP) : "rdi", "memory", "cc" ); entered = !fail && !(vmcs_read(EXI_REASON) & VMX_ENTRY_FAILURE); if (entered) { /* * VMCS isn't in "launched" state if there's been any * entry failure (early or otherwise). */ launched = 1; ret = exit_handler(); } else { failure.flags = host_rflags; failure.vmlaunch = !launched; failure.instr = launched ? "vmresume" : "vmlaunch"; failure.early = fail; ret = entry_failure_handler(&failure); } switch (ret) { case VMX_TEST_RESUME: continue; case VMX_TEST_VMEXIT: return 0; case VMX_TEST_EXIT: break; default: printf("ERROR : Invalid %s_handler return val %d.\n", entered ? "exit" : "entry_failure", ret); break; } if (entered) print_vmexit_info(); else print_vmentry_failure_info(&failure); abort(); } } static int test_run(struct vmx_test *test) { if (test->name == NULL) test->name = "(no name)"; if (vmx_on()) { printf("%s : vmxon failed.\n", __func__); return 1; } init_vmcs(&(test->vmcs)); /* Directly call test->init is ok here, init_vmcs has done vmcs init, vmclear and vmptrld*/ if (test->init && test->init(test->vmcs) != VMX_TEST_START) goto out; test->exits = 0; current = test; regs = test->guest_regs; vmcs_write(GUEST_RFLAGS, regs.rflags | 0x2); launched = 0; printf("\nTest suite: %s\n", test->name); vmx_run(); out: if (vmx_off()) { printf("%s : vmxoff failed.\n", __func__); return 1; } return 0; } extern struct vmx_test vmx_tests[]; int main(void) { int i = 0; setup_vm(); setup_idt(); hypercall_field = 0; if (!(cpuid(1).c & (1 << 5))) { printf("WARNING: vmx not supported, add '-cpu host'\n"); goto exit; } init_vmx(); if (test_vmx_feature_control() != 0) goto exit; /* Set basic test ctxt the same as "null" */ current = &vmx_tests[0]; if (test_vmxon() != 0) goto exit; test_vmptrld(); test_vmclear(); test_vmptrst(); init_vmcs(&vmcs_root); if (vmx_run()) { report("test vmlaunch", 0); goto exit; } test_vmxoff(); test_vmx_caps(); while (vmx_tests[++i].name != NULL) if (test_run(&vmx_tests[i])) goto exit; exit: return report_summary(); }