/* * Test for x86 debugging facilities * * Copyright (c) Siemens AG, 2014 * * Authors: * Jan Kiszka * * This work is licensed under the terms of the GNU GPL, version 2. */ #include #include "libcflat.h" #include "processor.h" #include "desc.h" #include "usermode.h" static volatile unsigned long bp_addr; static volatile unsigned long db_addr[10], dr6[10]; static volatile unsigned int n; static volatile unsigned long value; static inline void write_dr4(ulong val) { asm volatile ("mov %0, %%dr4" : : "r"(val) : "memory"); } static inline ulong read_dr4(void) { ulong val; asm volatile ("mov %%dr4, %0" : "=r"(val)); return val; } static void handle_db(struct ex_regs *regs) { db_addr[n] = regs->rip; dr6[n] = read_dr6(); if (dr6[n] & 0x1) regs->rflags |= X86_EFLAGS_RF; if (++n >= 10) { regs->rflags &= ~X86_EFLAGS_TF; write_dr7(0x00000400); } } static inline bool is_single_step_db(unsigned long dr6_val) { return dr6_val == (DR6_ACTIVE_LOW | DR6_BS); } static inline bool is_general_detect_db(unsigned long dr6_val) { return dr6_val == (DR6_ACTIVE_LOW | DR6_BD); } static inline bool is_icebp_db(unsigned long dr6_val) { return dr6_val == DR6_ACTIVE_LOW; } extern unsigned char handle_db_save_rip; asm("handle_db_save_rip:\n" "stc\n" "nop;nop;nop\n" "rclq $1, n(%rip)\n" "iretq\n"); static void handle_bp(struct ex_regs *regs) { bp_addr = regs->rip; } bool got_ud; static void handle_ud(struct ex_regs *regs) { unsigned long cr4 = read_cr4(); write_cr4(cr4 & ~X86_CR4_DE); got_ud = 1; } typedef unsigned long (*db_test_fn)(void); typedef void (*db_report_fn)(unsigned long, const char *); static unsigned long singlestep_with_movss_blocking_and_dr7_gd(void); static unsigned long singlestep_with_sti_hlt(void); static void __run_single_step_db_test(db_test_fn test, db_report_fn report_fn) { unsigned long start; bool ign; n = 0; write_dr6(0); start = test(); report_fn(start, ""); /* * MOV DR #GPs at CPL>0, don't try to run the DR7.GD test in usermode. * Likewise for HLT. */ if (test == singlestep_with_movss_blocking_and_dr7_gd || test == singlestep_with_sti_hlt) return; n = 0; write_dr6(0); /* * Run the test in usermode. Use the expected start RIP from the first * run, the usermode framework doesn't make it easy to get the expected * RIP out of the test, and it shouldn't change in any case. Run the * test with IOPL=3 so that it can use OUT, CLI, STI, etc... */ set_iopl(3); run_in_user((usermode_func)test, GP_VECTOR, 0, 0, 0, 0, &ign); set_iopl(0); report_fn(start, "Usermode "); } #define run_ss_db_test(name) __run_single_step_db_test(name, report_##name) static void report_singlestep_basic(unsigned long start, const char *usermode) { report(n == 3 && is_single_step_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 1 && is_single_step_db(dr6[2]) && db_addr[2] == start + 1 + 1, "%sSingle-step #DB basic test", usermode); } static noinline unsigned long singlestep_basic(void) { unsigned long start; /* * After being enabled, single-step breakpoints have a one instruction * delay before the first #DB is generated. */ asm volatile ( "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "and $~(1<<8),%%rax\n\t" "1:push %%rax\n\t" "popf\n\t" "lea 1b(%%rip), %0\n\t" : "=r" (start) : : "rax" ); return start; } static void report_singlestep_emulated_instructions(unsigned long start, const char *usermode) { report(n == 7 && is_single_step_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 1 && is_single_step_db(dr6[2]) && db_addr[2] == start + 1 + 3 && is_single_step_db(dr6[3]) && db_addr[3] == start + 1 + 3 + 2 && is_single_step_db(dr6[4]) && db_addr[4] == start + 1 + 3 + 2 + 5 && is_single_step_db(dr6[5]) && db_addr[5] == start + 1 + 3 + 2 + 5 + 1 && is_single_step_db(dr6[6]) && db_addr[6] == start + 1 + 3 + 2 + 5 + 1 + 1, "%sSingle-step #DB on emulated instructions", usermode); } static noinline unsigned long singlestep_emulated_instructions(void) { unsigned long start; /* * Verify single-step #DB are generated correctly on emulated * instructions, e.g. CPUID and RDMSR. */ asm volatile ( "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "and $~(1<<8),%%rax\n\t" "1:push %%rax\n\t" "xor %%rax,%%rax\n\t" "cpuid\n\t" "movl $0x3fd, %%edx\n\t" "inb %%dx, %%al\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start) : : "rax", "ebx", "ecx", "edx" ); return start; } static void report_singlestep_with_sti_blocking(unsigned long start, const char *usermode) { report(n == 4 && is_single_step_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 6 && is_single_step_db(dr6[2]) && db_addr[2] == start + 6 + 1 && is_single_step_db(dr6[3]) && db_addr[3] == start + 6 + 1 + 1, "%sSingle-step #DB w/ STI blocking", usermode); } static noinline unsigned long singlestep_with_sti_blocking(void) { unsigned long start_rip; /* * STI blocking doesn't suppress #DBs, thus the first single-step #DB * should arrive after the standard one instruction delay. */ asm volatile( "cli\n\t" "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "sti\n\t" "1:and $~(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start_rip) : : "rax" ); return start_rip; } static void report_singlestep_with_movss_blocking(unsigned long start, const char *usermode) { report(n == 3 && is_single_step_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 1 && is_single_step_db(dr6[2]) && db_addr[2] == start + 1 + 1, "%sSingle-step #DB w/ MOVSS blocking", usermode); } static noinline unsigned long singlestep_with_movss_blocking(void) { unsigned long start_rip; /* * MOVSS blocking suppresses single-step #DBs (and select other #DBs), * thus the first single-step #DB should occur after MOVSS blocking * expires, i.e. two instructions after #DBs are enabled in this case. */ asm volatile( "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "mov %%ss, %%ax\n\t" "popf\n\t" "mov %%ax, %%ss\n\t" "and $~(1<<8),%%rax\n\t" "1: push %%rax\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start_rip) : : "rax" ); return start_rip; } static void report_singlestep_with_movss_blocking_and_icebp(unsigned long start, const char *usermode) { report(n == 4 && is_icebp_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 6 && is_single_step_db(dr6[2]) && db_addr[2] == start + 6 + 1 && is_single_step_db(dr6[3]) && db_addr[3] == start + 6 + 1 + 1, "%sSingle-Step + ICEBP #DB w/ MOVSS blocking", usermode); } static noinline unsigned long singlestep_with_movss_blocking_and_icebp(void) { unsigned long start; /* * ICEBP, a.k.a. INT1 or int1icebrk, is an oddball. It generates a * trap-like #DB, is intercepted if #DBs are intercepted, and manifests * as a #DB VM-Exit, but the VM-Exit occurs on the ICEBP itself, i.e. * it's treated as an instruction intercept. Verify that ICEBP is * correctly emulated as a trap-like #DB when intercepted, and that * MOVSS blocking is handled correctly with respect to single-step * breakpoints being enabled. */ asm volatile( "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "mov %%ss, %%ax\n\t" "popf\n\t" "mov %%ax, %%ss\n\t" ".byte 0xf1;" "1:and $~(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start) : : "rax" ); return start; } static void report_singlestep_with_movss_blocking_and_dr7_gd(unsigned long start, const char *ign) { report(n == 5 && is_general_detect_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 3 && is_single_step_db(dr6[2]) && db_addr[2] == start + 3 + 6 && is_single_step_db(dr6[3]) && db_addr[3] == start + 3 + 6 + 1 && is_single_step_db(dr6[4]) && db_addr[4] == start + 3 + 6 + 1 + 1, "Single-step #DB w/ MOVSS blocking and DR7.GD=1"); } static noinline unsigned long singlestep_with_movss_blocking_and_dr7_gd(void) { unsigned long start_rip; write_dr7(DR7_GD); /* * MOVSS blocking does NOT suppress General Detect #DBs, which have * fault-like behavior. Note, DR7.GD is cleared by the CPU upon * successful delivery of the #DB. DR6.BD is NOT cleared by the CPU, * but the MOV DR6 below will be re-executed after handling the * General Detect #DB. */ asm volatile( "xor %0, %0\n\t" "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "mov %%ss, %%ax\n\t" "popf\n\t" "mov %%ax, %%ss\n\t" "1: mov %0, %%dr6\n\t" "and $~(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start_rip) : : "rax" ); return start_rip; } static void report_singlestep_with_sti_hlt(unsigned long start, const char *usermode) { report(n == 5 && is_single_step_db(dr6[0]) && db_addr[0] == start && is_single_step_db(dr6[1]) && db_addr[1] == start + 1 && is_single_step_db(dr6[2]) && db_addr[2] == start + 1 + 6 && is_single_step_db(dr6[3]) && db_addr[3] == start + 1 + 6 + 1 && is_single_step_db(dr6[4]) && db_addr[4] == start + 1 + 6 + 1 + 1, "%sSingle-step #DB w/ STI;HLT", usermode); } #define APIC_LVT_TIMER_VECTOR (0xee) static void lvtt_handler(isr_regs_t *regs) { eoi(); } static noinline unsigned long singlestep_with_sti_hlt(void) { unsigned long start_rip; cli(); handle_irq(APIC_LVT_TIMER_VECTOR, lvtt_handler); apic_write(APIC_LVTT, APIC_LVT_TIMER_ONESHOT | APIC_LVT_TIMER_VECTOR); apic_write(APIC_TDCR, 0x0000000b); apic_write(APIC_TMICT, 1000000); /* * STI blocking doesn't suppress #DBs, thus the first single-step #DB * should arrive after the standard one instruction delay. */ asm volatile( "pushf\n\t" "pop %%rax\n\t" "or $(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "sti\n\t" "1:hlt;\n\t" "and $~(1<<8),%%rax\n\t" "push %%rax\n\t" "popf\n\t" "lea 1b(%%rip),%0\n\t" : "=r" (start_rip) : : "rax" ); return start_rip; } int main(int ac, char **av) { unsigned long cr4; handle_exception(DB_VECTOR, handle_db); handle_exception(BP_VECTOR, handle_bp); handle_exception(UD_VECTOR, handle_ud); /* * DR4 is an alias for DR6 (and DR5 aliases DR7) if CR4.DE is NOT set, * and is reserved if CR4.DE=1 (Debug Extensions enabled). */ got_ud = 0; cr4 = read_cr4(); write_cr4(cr4 & ~X86_CR4_DE); write_dr4(0); write_dr6(DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP1); report(read_dr4() == (DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP1) && !got_ud, "DR4==DR6 with CR4.DE == 0"); cr4 = read_cr4(); write_cr4(cr4 | X86_CR4_DE); read_dr4(); report(got_ud, "DR4 read got #UD with CR4.DE == 1"); write_dr6(0); extern unsigned char sw_bp; asm volatile("int3; sw_bp:"); report(bp_addr == (unsigned long)&sw_bp, "#BP"); /* * The CPU sets/clears bits 0-3 (trap bits for DR0-3) on #DB based on * whether or not the corresponding DR0-3 got a match. All other bits * in DR6 are set if and only if their associated breakpoint condition * is active, and are never cleared by the CPU. Verify a match on DR0 * is reported correctly, and that DR6.BS is not set when single-step * breakpoints are disabled, but is left set (if set by software). */ n = 0; extern unsigned char hw_bp1; write_dr0(&hw_bp1); write_dr7(DR7_FIXED_1 | DR7_GLOBAL_ENABLE_DR0); asm volatile("hw_bp1: nop"); report(n == 1 && db_addr[0] == ((unsigned long)&hw_bp1) && dr6[0] == (DR6_ACTIVE_LOW | DR6_TRAP0), "hw breakpoint (test that dr6.BS is not set)"); n = 0; extern unsigned char hw_bp2; write_dr0(&hw_bp2); write_dr6(DR6_BS | DR6_TRAP1); asm volatile("hw_bp2: nop"); report(n == 1 && db_addr[0] == ((unsigned long)&hw_bp2) && dr6[0] == (DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP0), "hw breakpoint (test that dr6.BS is not cleared)"); run_ss_db_test(singlestep_basic); run_ss_db_test(singlestep_emulated_instructions); run_ss_db_test(singlestep_with_sti_blocking); run_ss_db_test(singlestep_with_movss_blocking); run_ss_db_test(singlestep_with_movss_blocking_and_icebp); run_ss_db_test(singlestep_with_movss_blocking_and_dr7_gd); run_ss_db_test(singlestep_with_sti_hlt); n = 0; write_dr1((void *)&value); write_dr6(DR6_BS); write_dr7(0x00d0040a); // 4-byte write extern unsigned char hw_wp1; asm volatile( "mov $42,%%rax\n\t" "mov %%rax,%0\n\t; hw_wp1:" : "=m" (value) : : "rax"); report(n == 1 && db_addr[0] == ((unsigned long)&hw_wp1) && dr6[0] == (DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP1), "hw watchpoint (test that dr6.BS is not cleared)"); n = 0; write_dr6(0); extern unsigned char hw_wp2; asm volatile( "mov $42,%%rax\n\t" "mov %%rax,%0\n\t; hw_wp2:" : "=m" (value) : : "rax"); report(n == 1 && db_addr[0] == ((unsigned long)&hw_wp2) && dr6[0] == (DR6_ACTIVE_LOW | DR6_TRAP1), "hw watchpoint (test that dr6.BS is not set)"); n = 0; write_dr6(0); extern unsigned char sw_icebp; asm volatile(".byte 0xf1; sw_icebp:"); report(n == 1 && db_addr[0] == (unsigned long)&sw_icebp && dr6[0] == DR6_ACTIVE_LOW, "icebp"); write_dr7(0x400); value = KERNEL_DS; write_dr7(0x00f0040a); // 4-byte read or write /* * Each invocation of the handler should shift n by 1 and set bit 0 to 1. * We expect a single invocation, so n should become 3. If the entry * RIP is wrong, or if the handler is executed more than once, the value * will not match. */ set_idt_entry(1, &handle_db_save_rip, 0); n = 1; asm volatile( "clc\n\t" "mov %0,%%ss\n\t" ".byte 0x2e, 0x2e, 0xf1" : "=m" (value) : : "rax"); report(n == 3, "MOV SS + watchpoint + ICEBP"); /* * Here the #DB handler is invoked twice, once as a software exception * and once as a software interrupt. */ n = 1; asm volatile( "clc\n\t" "mov %0,%%ss\n\t" "int $1" : "=m" (value) : : "rax"); report(n == 7, "MOV SS + watchpoint + int $1"); /* * Here the #DB and #BP handlers are invoked once each. */ n = 1; bp_addr = 0; asm volatile( "mov %0,%%ss\n\t" ".byte 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0x2e, 0xcc\n\t" "sw_bp2:" : "=m" (value) : : "rax"); extern unsigned char sw_bp2; report(n == 3 && bp_addr == (unsigned long)&sw_bp2, "MOV SS + watchpoint + INT3"); return report_summary(); }