#include "libcflat.h" #include "apic.h" #include "vm.h" #include "smp.h" #include "desc.h" #include "isr.h" #include "msr.h" static void test_lapic_existence(void) { u32 lvr; lvr = apic_read(APIC_LVR); printf("apic version: %x\n", lvr); report("apic existence", (u16)lvr == 0x14); } #define TSC_DEADLINE_TIMER_MODE (2 << 17) #define TSC_DEADLINE_TIMER_VECTOR 0xef #define MSR_IA32_TSC 0x00000010 #define MSR_IA32_TSCDEADLINE 0x000006e0 static int tdt_count; static void tsc_deadline_timer_isr(isr_regs_t *regs) { ++tdt_count; } static void __test_tsc_deadline_timer(void) { handle_irq(TSC_DEADLINE_TIMER_VECTOR, tsc_deadline_timer_isr); irq_enable(); wrmsr(MSR_IA32_TSCDEADLINE, rdmsr(MSR_IA32_TSC)); asm volatile ("nop"); report("tsc deadline timer", tdt_count == 1); report("tsc deadline timer clearing", rdmsr(MSR_IA32_TSCDEADLINE) == 0); } static int enable_tsc_deadline_timer(void) { uint32_t lvtt; if (cpuid(1).c & (1 << 24)) { lvtt = TSC_DEADLINE_TIMER_MODE | TSC_DEADLINE_TIMER_VECTOR; apic_write(APIC_LVTT, lvtt); return 1; } else { return 0; } } static void test_tsc_deadline_timer(void) { if(enable_tsc_deadline_timer()) { __test_tsc_deadline_timer(); } else { report_skip("tsc deadline timer not detected"); } } static void do_write_apicbase(void *data) { wrmsr(MSR_IA32_APICBASE, *(u64 *)data); } void test_enable_x2apic(void) { u64 invalid_state = APIC_DEFAULT_PHYS_BASE | APIC_BSP | APIC_EXTD; u64 apic_enabled = APIC_DEFAULT_PHYS_BASE | APIC_BSP | APIC_EN; u64 x2apic_enabled = APIC_DEFAULT_PHYS_BASE | APIC_BSP | APIC_EN | APIC_EXTD; if (enable_x2apic()) { printf("x2apic enabled\n"); report("x2apic enabled to invalid state", test_for_exception(GP_VECTOR, do_write_apicbase, &invalid_state)); report("x2apic enabled to apic enabled", test_for_exception(GP_VECTOR, do_write_apicbase, &apic_enabled)); wrmsr(MSR_IA32_APICBASE, APIC_DEFAULT_PHYS_BASE | APIC_BSP); report("disabled to invalid state", test_for_exception(GP_VECTOR, do_write_apicbase, &invalid_state)); report("disabled to x2apic enabled", test_for_exception(GP_VECTOR, do_write_apicbase, &x2apic_enabled)); wrmsr(MSR_IA32_APICBASE, apic_enabled); report("apic enabled to invalid state", test_for_exception(GP_VECTOR, do_write_apicbase, &invalid_state)); wrmsr(MSR_IA32_APICBASE, x2apic_enabled); apic_write(APIC_SPIV, 0x1ff); } else { printf("x2apic not detected\n"); report("enable unsupported x2apic", test_for_exception(GP_VECTOR, do_write_apicbase, &x2apic_enabled)); } } #define ALTERNATE_APIC_BASE 0x42000000 static void test_apicbase(void) { u64 orig_apicbase = rdmsr(MSR_IA32_APICBASE); u32 lvr = apic_read(APIC_LVR); u64 value; wrmsr(MSR_IA32_APICBASE, orig_apicbase & ~(APIC_EN | APIC_EXTD)); wrmsr(MSR_IA32_APICBASE, ALTERNATE_APIC_BASE | APIC_BSP | APIC_EN); report_prefix_push("apicbase"); report("relocate apic", *(volatile u32 *)(ALTERNATE_APIC_BASE + APIC_LVR) == lvr); value = orig_apicbase | (1UL << cpuid_maxphyaddr()); report("reserved physaddr bits", test_for_exception(GP_VECTOR, do_write_apicbase, &value)); value = orig_apicbase | 1; report("reserved low bits", test_for_exception(GP_VECTOR, do_write_apicbase, &value)); wrmsr(MSR_IA32_APICBASE, orig_apicbase); apic_write(APIC_SPIV, 0x1ff); report_prefix_pop(); } static void do_write_apic_id(void *id) { apic_write(APIC_ID, *(u32 *)id); } static void __test_apic_id(void * unused) { u32 id, newid; u8 initial_xapic_id = cpuid(1).b >> 24; u32 initial_x2apic_id = cpuid(0xb).d; bool x2apic_mode = rdmsr(MSR_IA32_APICBASE) & APIC_EXTD; if (x2apic_mode) reset_apic(); id = apic_id(); report("xapic id matches cpuid", initial_xapic_id == id); newid = (id + 1) << 24; report("writeable xapic id", !test_for_exception(GP_VECTOR, do_write_apic_id, &newid) && id + 1 == apic_id()); if (!enable_x2apic()) goto out; report("non-writeable x2apic id", test_for_exception(GP_VECTOR, do_write_apic_id, &newid)); report("sane x2apic id", initial_xapic_id == (apic_id() & 0xff)); /* old QEMUs do not set initial x2APIC ID */ report("x2apic id matches cpuid", initial_xapic_id == (initial_x2apic_id & 0xff) && initial_x2apic_id == apic_id()); out: reset_apic(); report("correct xapic id after reset", initial_xapic_id == apic_id()); /* old KVMs do not reset xAPIC ID */ if (id != apic_id()) apic_write(APIC_ID, id << 24); if (x2apic_mode) enable_x2apic(); } static void test_apic_id(void) { if (cpu_count() < 2) return; on_cpu(1, __test_apic_id, NULL); } static int ipi_count; static void self_ipi_isr(isr_regs_t *regs) { ++ipi_count; eoi(); } static void test_self_ipi(void) { int vec = 0xf1; handle_irq(vec, self_ipi_isr); irq_enable(); apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | vec, 0); asm volatile ("nop"); report("self ipi", ipi_count == 1); } volatile int nmi_counter_private, nmi_counter, nmi_hlt_counter, sti_loop_active; void sti_nop(char *p) { asm volatile ( ".globl post_sti \n\t" "sti \n" /* * vmx won't exit on external interrupt if blocked-by-sti, * so give it a reason to exit by accessing an unmapped page. */ "post_sti: testb $0, %0 \n\t" "nop \n\t" "cli" : : "m"(*p) ); nmi_counter = nmi_counter_private; } static void sti_loop(void *ignore) { unsigned k = 0; while (sti_loop_active) { sti_nop((char *)(ulong)((k++ * 4096) % (128 * 1024 * 1024))); } } static void nmi_handler(isr_regs_t *regs) { extern void post_sti(void); ++nmi_counter_private; nmi_hlt_counter += regs->rip == (ulong)post_sti; } static void update_cr3(void *cr3) { write_cr3((ulong)cr3); } static void test_sti_nmi(void) { unsigned old_counter; if (cpu_count() < 2) { return; } handle_irq(2, nmi_handler); on_cpu(1, update_cr3, (void *)read_cr3()); sti_loop_active = 1; on_cpu_async(1, sti_loop, 0); while (nmi_counter < 30000) { old_counter = nmi_counter; apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 1); while (nmi_counter == old_counter) { ; } } sti_loop_active = 0; report("nmi-after-sti", nmi_hlt_counter == 0); } static volatile bool nmi_done, nmi_flushed; static volatile int nmi_received; static volatile int cpu0_nmi_ctr1, cpu1_nmi_ctr1; static volatile int cpu0_nmi_ctr2, cpu1_nmi_ctr2; static void multiple_nmi_handler(isr_regs_t *regs) { ++nmi_received; } static void kick_me_nmi(void *blah) { while (!nmi_done) { ++cpu1_nmi_ctr1; while (cpu1_nmi_ctr1 != cpu0_nmi_ctr1 && !nmi_done) { pause(); } if (nmi_done) { return; } apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0); /* make sure the NMI has arrived by sending an IPI after it */ apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_FIXED | APIC_INT_ASSERT | 0x44, 0); ++cpu1_nmi_ctr2; while (cpu1_nmi_ctr2 != cpu0_nmi_ctr2 && !nmi_done) { pause(); } } } static void flush_nmi(isr_regs_t *regs) { nmi_flushed = true; apic_write(APIC_EOI, 0); } static void test_multiple_nmi(void) { int i; bool ok = true; if (cpu_count() < 2) { return; } sti(); handle_irq(2, multiple_nmi_handler); handle_irq(0x44, flush_nmi); on_cpu_async(1, kick_me_nmi, 0); for (i = 0; i < 1000000; ++i) { nmi_flushed = false; nmi_received = 0; ++cpu0_nmi_ctr1; while (cpu1_nmi_ctr1 != cpu0_nmi_ctr1) { pause(); } apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0); while (!nmi_flushed) { pause(); } if (nmi_received != 2) { ok = false; break; } ++cpu0_nmi_ctr2; while (cpu1_nmi_ctr2 != cpu0_nmi_ctr2) { pause(); } } nmi_done = true; report("multiple nmi", ok); } int main() { setup_vm(); smp_init(); setup_idt(); test_lapic_existence(); mask_pic_interrupts(); test_apic_id(); test_enable_x2apic(); test_apicbase(); test_self_ipi(); test_sti_nmi(); test_multiple_nmi(); test_tsc_deadline_timer(); return report_summary(); }