#include "libcflat.h" #include "apic.h" #include "vm.h" #include "smp.h" #include "desc.h" #include "isr.h" #include "msr.h" #include "atomic.h" #include "fwcfg.h" #define MAX_TPR 0xf static bool is_apic_hw_enabled(void) { return rdmsr(MSR_IA32_APICBASE) & APIC_EN; } static bool is_apic_sw_enabled(void) { return apic_read(APIC_SPIV) & APIC_SPIV_APIC_ENABLED; } static bool is_x2apic_enabled(void) { return (rdmsr(MSR_IA32_APICBASE) & (APIC_EN | APIC_EXTD)) == (APIC_EN | APIC_EXTD); } static bool is_xapic_enabled(void) { return (rdmsr(MSR_IA32_APICBASE) & (APIC_EN | APIC_EXTD)) == APIC_EN; } static void test_lapic_existence(void) { u8 version; version = (u8)apic_read(APIC_LVR); printf("apic version: %x\n", version); report(version >= 0x10 && version <= 0x15, "apic existence"); } #define TSC_DEADLINE_TIMER_VECTOR 0xef #define BROADCAST_VECTOR 0xcf static int tdt_count; static void tsc_deadline_timer_isr(isr_regs_t *regs) { ++tdt_count; eoi(); } static void __test_tsc_deadline_timer(void) { handle_irq(TSC_DEADLINE_TIMER_VECTOR, tsc_deadline_timer_isr); wrmsr(MSR_IA32_TSCDEADLINE, rdmsr(MSR_IA32_TSC)); asm volatile ("nop"); report(tdt_count == 1, "tsc deadline timer"); report(rdmsr(MSR_IA32_TSCDEADLINE) == 0, "tsc deadline timer clearing"); } static int enable_tsc_deadline_timer(void) { uint32_t lvtt; if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { lvtt = APIC_LVT_TIMER_TSCDEADLINE | TSC_DEADLINE_TIMER_VECTOR; apic_write(APIC_LVTT, lvtt); return 1; } else { return 0; } } static void test_tsc_deadline_timer(void) { if(enable_tsc_deadline_timer()) __test_tsc_deadline_timer(); else report_skip("tsc deadline timer not detected"); } static void do_write_apicbase(void *data) { wrmsr(MSR_IA32_APICBASE, *(u64 *)data); } static bool test_write_apicbase_exception(u64 data) { return test_for_exception(GP_VECTOR, do_write_apicbase, &data); } static void test_enable_x2apic(void) { u64 apicbase = rdmsr(MSR_IA32_APICBASE); if (enable_x2apic()) { printf("x2apic enabled\n"); apicbase &= ~(APIC_EN | APIC_EXTD); report(test_write_apicbase_exception(apicbase | APIC_EXTD), "x2apic enabled to invalid state"); report(test_write_apicbase_exception(apicbase | APIC_EN), "x2apic enabled to apic enabled"); report(!test_write_apicbase_exception(apicbase | 0), "x2apic enabled to disabled state"); report(test_write_apicbase_exception(apicbase | APIC_EXTD), "disabled to invalid state"); report(test_write_apicbase_exception(apicbase | APIC_EN | APIC_EXTD), "disabled to x2apic enabled"); report(!test_write_apicbase_exception(apicbase | APIC_EN), "apic disabled to apic enabled"); report(test_write_apicbase_exception(apicbase | APIC_EXTD), "apic enabled to invalid state"); } else { printf("x2apic not detected\n"); report(test_write_apicbase_exception(APIC_EN | APIC_EXTD), "enable unsupported x2apic"); } } static void verify_disabled_apic_mmio(void) { volatile u32 *lvr = (volatile u32 *)(APIC_DEFAULT_PHYS_BASE + APIC_LVR); volatile u32 *tpr = (volatile u32 *)(APIC_DEFAULT_PHYS_BASE + APIC_TASKPRI); u32 cr8 = read_cr8(); memset((void *)APIC_DEFAULT_PHYS_BASE, 0xff, PAGE_SIZE); report(*lvr == ~0, "*0xfee00030: %x", *lvr); report(read_cr8() == cr8, "CR8: %lx", read_cr8()); write_cr8(cr8 ^ MAX_TPR); report(read_cr8() == (cr8 ^ MAX_TPR), "CR8: %lx", read_cr8()); report(*tpr == ~0, "*0xfee00080: %x", *tpr); write_cr8(cr8); } static void test_apic_disable(void) { volatile u32 *lvr = (volatile u32 *)(APIC_DEFAULT_PHYS_BASE + APIC_LVR); volatile u32 *tpr = (volatile u32 *)(APIC_DEFAULT_PHYS_BASE + APIC_TASKPRI); u32 apic_version = apic_read(APIC_LVR); u32 cr8 = read_cr8(); report_prefix_push("apic_disable"); disable_apic(); report(!is_apic_hw_enabled(), "Local apic disabled"); report(!this_cpu_has(X86_FEATURE_APIC), "CPUID.1H:EDX.APIC[bit 9] is clear"); verify_disabled_apic_mmio(); reset_apic(); report(is_xapic_enabled(), "Local apic enabled in xAPIC mode"); report(this_cpu_has(X86_FEATURE_APIC), "CPUID.1H:EDX.APIC[bit 9] is set"); report(*lvr == apic_version, "*0xfee00030: %x", *lvr); report(*tpr == cr8, "*0xfee00080: %x", *tpr); write_cr8(cr8 ^ MAX_TPR); report(*tpr == (cr8 ^ MAX_TPR) << 4, "*0xfee00080: %x", *tpr); write_cr8(cr8); if (enable_x2apic()) { report(is_x2apic_enabled(), "Local apic enabled in x2APIC mode"); report(this_cpu_has(X86_FEATURE_APIC), "CPUID.1H:EDX.APIC[bit 9] is set"); verify_disabled_apic_mmio(); } report_prefix_pop(); } #define ALTERNATE_APIC_BASE 0xfed40000 static void test_apicbase(void) { u64 orig_apicbase = rdmsr(MSR_IA32_APICBASE); u32 lvr = apic_read(APIC_LVR); u64 value; wrmsr(MSR_IA32_APICBASE, orig_apicbase & ~(APIC_EN | APIC_EXTD)); wrmsr(MSR_IA32_APICBASE, ALTERNATE_APIC_BASE | APIC_BSP | APIC_EN); report_prefix_push("apicbase"); report(*(volatile u32 *)(ALTERNATE_APIC_BASE + APIC_LVR) == lvr, "relocate apic"); value = orig_apicbase | (1UL << cpuid_maxphyaddr()); report(test_for_exception(GP_VECTOR, do_write_apicbase, &value), "reserved physaddr bits"); value = orig_apicbase | 1; report(test_for_exception(GP_VECTOR, do_write_apicbase, &value), "reserved low bits"); /* Restore the APIC address, the "reset" helpers leave it as is. */ wrmsr(MSR_IA32_APICBASE, orig_apicbase); report_prefix_pop(); } static void do_write_apic_id(void *id) { apic_write(APIC_ID, *(u32 *)id); } static void __test_apic_id(void * unused) { u32 id, newid; u8 initial_xapic_id = cpuid(1).b >> 24; u32 initial_x2apic_id = cpuid(0xb).d; bool x2apic_mode = is_x2apic_enabled(); if (x2apic_mode) reset_apic(); id = apic_id(); report(initial_xapic_id == id, "xapic id matches cpuid"); newid = (id + 1) << 24; report(!test_for_exception(GP_VECTOR, do_write_apic_id, &newid) && (id == apic_id() || id + 1 == apic_id()), "writeable xapic id"); if (!enable_x2apic()) goto out; report(test_for_exception(GP_VECTOR, do_write_apic_id, &newid), "non-writeable x2apic id"); report(initial_xapic_id == (apic_id() & 0xff), "sane x2apic id"); /* old QEMUs do not set initial x2APIC ID */ report(initial_xapic_id == (initial_x2apic_id & 0xff) && initial_x2apic_id == apic_id(), "x2apic id matches cpuid"); out: reset_apic(); report(initial_xapic_id == apic_id(), "correct xapic id after reset"); /* old KVMs do not reset xAPIC ID */ if (id != apic_id()) apic_write(APIC_ID, id << 24); if (x2apic_mode) enable_x2apic(); } static void test_apic_id(void) { if (cpu_count() < 2) return; on_cpu(1, __test_apic_id, NULL); } static atomic_t ipi_count; static void handle_ipi(isr_regs_t *regs) { atomic_inc(&ipi_count); eoi(); } static void __test_self_ipi(void) { u64 start = rdtsc(); int vec = 0xf1; handle_irq(vec, handle_ipi); apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | vec, id_map[0]); do { pause(); } while (rdtsc() - start < 1000000000 && atomic_read(&ipi_count) == 0); } static void test_self_ipi_xapic(void) { report_prefix_push("self_ipi_xapic"); /* Reset to xAPIC mode. */ reset_apic(); report(is_xapic_enabled(), "Local apic enabled in xAPIC mode"); atomic_set(&ipi_count, 0); __test_self_ipi(); report(atomic_read(&ipi_count) == 1, "self ipi"); report_prefix_pop(); } static void test_self_ipi_x2apic(void) { report_prefix_push("self_ipi_x2apic"); if (enable_x2apic()) { report(is_x2apic_enabled(), "Local apic enabled in x2APIC mode"); atomic_set(&ipi_count, 0); __test_self_ipi(); report(atomic_read(&ipi_count) == 1, "self ipi"); } else { report_skip("x2apic not detected"); } report_prefix_pop(); } volatile int nmi_counter_private, nmi_counter, nmi_hlt_counter, sti_loop_active; static void test_sti_nop(char *p) { asm volatile ( ".globl post_sti \n\t" "sti \n" /* * vmx won't exit on external interrupt if blocked-by-sti, * so give it a reason to exit by accessing an unmapped page. */ "post_sti: testb $0, %0 \n\t" "nop \n\t" "cli" : : "m"(*p) ); nmi_counter = nmi_counter_private; } static void sti_loop(void *ignore) { unsigned k = 0; while (sti_loop_active) test_sti_nop((char *)(ulong)((k++ * 4096) % (128 * 1024 * 1024))); } static void nmi_handler(isr_regs_t *regs) { extern void post_sti(void); ++nmi_counter_private; nmi_hlt_counter += regs->rip == (ulong)post_sti; } static void test_sti_nmi(void) { unsigned old_counter; if (cpu_count() < 2) return; handle_irq(2, nmi_handler); on_cpu(1, update_cr3, (void *)read_cr3()); sti_loop_active = 1; on_cpu_async(1, sti_loop, 0); while (nmi_counter < 30000) { old_counter = nmi_counter; apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[1]); while (nmi_counter == old_counter) ; } sti_loop_active = 0; report(nmi_hlt_counter == 0, "nmi-after-sti"); } static volatile bool nmi_done, nmi_flushed; static volatile int nmi_received; static volatile int cpu0_nmi_ctr1, cpu1_nmi_ctr1; static volatile int cpu0_nmi_ctr2, cpu1_nmi_ctr2; static void multiple_nmi_handler(isr_regs_t *regs) { ++nmi_received; } static void kick_me_nmi(void *blah) { while (!nmi_done) { ++cpu1_nmi_ctr1; while (cpu1_nmi_ctr1 != cpu0_nmi_ctr1 && !nmi_done) pause(); if (nmi_done) return; apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); /* make sure the NMI has arrived by sending an IPI after it */ apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_FIXED | APIC_INT_ASSERT | 0x44, id_map[0]); ++cpu1_nmi_ctr2; while (cpu1_nmi_ctr2 != cpu0_nmi_ctr2 && !nmi_done) pause(); } } static void flush_nmi(isr_regs_t *regs) { nmi_flushed = true; apic_write(APIC_EOI, 0); } static void test_multiple_nmi(void) { int i; bool ok = true; if (cpu_count() < 2) return; sti(); handle_irq(2, multiple_nmi_handler); handle_irq(0x44, flush_nmi); on_cpu_async(1, kick_me_nmi, 0); for (i = 0; i < 100000; ++i) { nmi_flushed = false; nmi_received = 0; ++cpu0_nmi_ctr1; while (cpu1_nmi_ctr1 != cpu0_nmi_ctr1) pause(); apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); while (!nmi_flushed) pause(); if (nmi_received != 2) { ok = false; break; } ++cpu0_nmi_ctr2; while (cpu1_nmi_ctr2 != cpu0_nmi_ctr2) pause(); } nmi_done = true; report(ok, "multiple nmi"); } static void pending_nmi_handler(isr_regs_t *regs) { int i; if (++nmi_received == 1) { for (i = 0; i < 10; ++i) apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI, 0); } } static void test_pending_nmi(void) { int i; handle_irq(2, pending_nmi_handler); for (i = 0; i < 100000; ++i) { nmi_received = 0; apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI, 0); while (nmi_received < 2) pause(); if (nmi_received != 2) break; } report(nmi_received == 2, "pending nmi"); } static volatile int lvtt_counter = 0; static void lvtt_handler(isr_regs_t *regs) { lvtt_counter++; eoi(); } static void test_apic_timer_one_shot(void) { uint64_t tsc1, tsc2; static const uint32_t interval = 0x10000; #define APIC_LVT_TIMER_VECTOR (0xee) handle_irq(APIC_LVT_TIMER_VECTOR, lvtt_handler); /* One shot mode */ apic_write(APIC_LVTT, APIC_LVT_TIMER_ONESHOT | APIC_LVT_TIMER_VECTOR); /* Divider == 1 */ apic_write(APIC_TDCR, 0x0000000b); tsc1 = rdtsc(); /* Set "Initial Counter Register", which starts the timer */ apic_write(APIC_TMICT, interval); while (!lvtt_counter); tsc2 = rdtsc(); /* * For LVT Timer clock, SDM vol 3 10.5.4 says it should be * derived from processor's bus clock (IIUC which is the same * as TSC), however QEMU seems to be using nanosecond. In all * cases, the following should satisfy on all modern * processors. */ report((lvtt_counter == 1) && (tsc2 - tsc1 >= interval), "APIC LVT timer one shot"); } static atomic_t broadcast_counter; static void broadcast_handler(isr_regs_t *regs) { atomic_inc(&broadcast_counter); eoi(); } static bool broadcast_received(unsigned ncpus) { unsigned counter; u64 start = rdtsc(); do { counter = atomic_read(&broadcast_counter); if (counter >= ncpus) break; pause(); } while (rdtsc() - start < 1000000000); atomic_set(&broadcast_counter, 0); return counter == ncpus; } static void test_physical_broadcast(void) { unsigned ncpus = cpu_count(); unsigned long cr3 = read_cr3(); u32 broadcast_address = enable_x2apic() ? 0xffffffff : 0xff; handle_irq(BROADCAST_VECTOR, broadcast_handler); for (int c = 1; c < ncpus; c++) on_cpu(c, update_cr3, (void *)cr3); printf("starting broadcast (%s)\n", enable_x2apic() ? "x2apic" : "xapic"); apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_FIXED | APIC_INT_ASSERT | BROADCAST_VECTOR, broadcast_address); report(broadcast_received(ncpus), "APIC physical broadcast address"); apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_FIXED | APIC_INT_ASSERT | BROADCAST_VECTOR | APIC_DEST_ALLINC, 0); report(broadcast_received(ncpus), "APIC physical broadcast shorthand"); } static void wait_until_tmcct_common(uint32_t initial_count, bool stop_when_half, bool should_wrap_around) { uint32_t tmcct = apic_read(APIC_TMCCT); if (tmcct) { while (tmcct > (initial_count / 2)) tmcct = apic_read(APIC_TMCCT); if ( stop_when_half ) return; /* Wait until the counter reach 0 or wrap-around */ while ( tmcct <= (initial_count / 2) && tmcct > 0 ) tmcct = apic_read(APIC_TMCCT); /* Wait specifically for wrap around to skip 0 TMCCR if we were asked to */ while (should_wrap_around && !tmcct) tmcct = apic_read(APIC_TMCCT); } } static void wait_until_tmcct_is_zero(uint32_t initial_count, bool stop_when_half) { return wait_until_tmcct_common(initial_count, stop_when_half, false); } static void wait_until_tmcct_wrap_around(uint32_t initial_count, bool stop_when_half) { return wait_until_tmcct_common(initial_count, stop_when_half, true); } static inline void apic_change_mode(unsigned long new_mode) { uint32_t lvtt; lvtt = apic_read(APIC_LVTT); apic_write(APIC_LVTT, (lvtt & ~APIC_LVT_TIMER_MASK) | new_mode); } static void test_apic_change_mode(void) { uint32_t tmict = 0x999999; printf("starting apic change mode\n"); apic_write(APIC_TMICT, tmict); apic_change_mode(APIC_LVT_TIMER_PERIODIC); report(apic_read(APIC_TMICT) == tmict, "TMICT value reset"); /* Testing one-shot */ apic_change_mode(APIC_LVT_TIMER_ONESHOT); apic_write(APIC_TMICT, tmict); report(apic_read(APIC_TMCCT), "TMCCT should have a non-zero value"); wait_until_tmcct_is_zero(tmict, false); report(!apic_read(APIC_TMCCT), "TMCCT should have reached 0"); /* * Write TMICT before changing mode from one-shot to periodic TMCCT should * be reset to TMICT periodicly */ apic_write(APIC_TMICT, tmict); wait_until_tmcct_is_zero(tmict, true); apic_change_mode(APIC_LVT_TIMER_PERIODIC); report(apic_read(APIC_TMCCT), "TMCCT should have a non-zero value"); /* * After the change of mode, the counter should not be reset and continue * counting down from where it was */ report(apic_read(APIC_TMCCT) < (tmict / 2), "TMCCT should not be reset to TMICT value"); /* * Specifically wait for timer wrap around and skip 0. * Under KVM lapic there is a possibility that a small amount of consecutive * TMCCR reads return 0 while hrtimer is reset in an async callback */ wait_until_tmcct_wrap_around(tmict, false); report(apic_read(APIC_TMCCT) > (tmict / 2), "TMCCT should be reset to the initial-count"); wait_until_tmcct_is_zero(tmict, true); /* * Keep the same TMICT and change timer mode to one-shot * TMCCT should be > 0 and count-down to 0 */ apic_change_mode(APIC_LVT_TIMER_ONESHOT); report(apic_read(APIC_TMCCT) < (tmict / 2), "TMCCT should not be reset to init"); wait_until_tmcct_is_zero(tmict, false); report(!apic_read(APIC_TMCCT), "TMCCT should have reach zero"); /* now tmcct == 0 and tmict != 0 */ apic_change_mode(APIC_LVT_TIMER_PERIODIC); report(!apic_read(APIC_TMCCT), "TMCCT should stay at zero"); } #define KVM_HC_SEND_IPI 10 static void test_pv_ipi(void) { int ret; unsigned long a0 = 0xFFFFFFFF, a1 = 0, a2 = 0xFFFFFFFF, a3 = 0x0; if (!test_device_enabled()) return; asm volatile("vmcall" : "=a"(ret) :"a"(KVM_HC_SEND_IPI), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); report(!ret, "PV IPIs testing"); } #define APIC_LDR_CLUSTER_FLAG BIT(31) static void set_ldr(void *__ldr) { u32 ldr = (unsigned long)__ldr; if (ldr & APIC_LDR_CLUSTER_FLAG) apic_write(APIC_DFR, APIC_DFR_CLUSTER); else apic_write(APIC_DFR, APIC_DFR_FLAT); apic_write(APIC_LDR, ldr << 24); } static int test_fixed_ipi(u32 dest_mode, u8 dest, u8 vector, int nr_ipis_expected, const char *mode_name) { u64 start = rdtsc(); int got; atomic_set(&ipi_count, 0); /* * Wait for vCPU1 to get back into HLT, i.e. into the host so that * KVM must handle incomplete AVIC IPIs. */ do { pause(); } while (rdtsc() - start < 1000000); start = rdtsc(); apic_icr_write(dest_mode | APIC_DM_FIXED | vector, dest); do { pause(); } while (rdtsc() - start < 1000000000 && atomic_read(&ipi_count) != nr_ipis_expected); /* Only report failures to cut down on the spam. */ got = atomic_read(&ipi_count); if (got != nr_ipis_expected) report_fail("Want %d IPI(s) using %s mode, dest = %x, got %d IPI(s)", nr_ipis_expected, mode_name, dest, got); atomic_set(&ipi_count, 0); return got == nr_ipis_expected ? 0 : 1; } static int test_logical_ipi_single_target(u8 logical_id, bool cluster, u8 dest, u8 vector) { /* Disallow broadcast, there are at least 2 vCPUs. */ if (dest == 0xff) return 0; set_ldr((void *)0); on_cpu(1, set_ldr, (void *)((u32)logical_id | (cluster ? APIC_LDR_CLUSTER_FLAG : 0))); return test_fixed_ipi(APIC_DEST_LOGICAL, dest, vector, 1, cluster ? "logical cluster" : "logical flat"); } static int test_logical_ipi_multi_target(u8 vcpu0_logical_id, u8 vcpu1_logical_id, bool cluster, u8 dest, u8 vector) { /* Allow broadcast unless there are more than 2 vCPUs. */ if (dest == 0xff && cpu_count() > 2) return 0; set_ldr((void *)((u32)vcpu0_logical_id | (cluster ? APIC_LDR_CLUSTER_FLAG : 0))); on_cpu(1, set_ldr, (void *)((u32)vcpu1_logical_id | (cluster ? APIC_LDR_CLUSTER_FLAG : 0))); return test_fixed_ipi(APIC_DEST_LOGICAL, dest, vector, 2, cluster ? "logical cluster" : "logical flat"); } static void test_logical_ipi_xapic(void) { int c, i, j, k, f; u8 vector = 0xf1; if (cpu_count() < 2) return; /* * All vCPUs must be in xAPIC mode, i.e. simply resetting this vCPUs * APIC is not sufficient. */ if (is_x2apic_enabled()) return; handle_irq(vector, handle_ipi); /* Flat mode. 8 bits for logical IDs (one per bit). */ f = 0; for (i = 0; i < 8; i++) { /* * Test all possible destination values. Non-existent targets * should be ignored. vCPU is always targeted, i.e. should get * an IPI. */ for (k = 0; k < 0xff; k++) { /* * Skip values that overlap the actual target the * resulting combination will be covered by other * numbers in the sequence. */ if (BIT(i) & k) continue; f += test_logical_ipi_single_target(BIT(i), false, BIT(i) | k, vector); } } report(!f, "IPI to single target using logical flat mode"); /* Cluster mode. 4 bits for the cluster, 4 bits for logical IDs. */ f = 0; for (c = 0; c < 0xf; c++) { for (i = 0; i < 4; i++) { /* Same as above, just fewer bits... */ for (k = 0; k < 0x10; k++) { if (BIT(i) & k) continue; test_logical_ipi_single_target(c << 4 | BIT(i), true, c << 4 | BIT(i) | k, vector); } } } report(!f, "IPI to single target using logical cluster mode"); /* And now do it all over again targeting both vCPU0 and vCPU1. */ f = 0; for (i = 0; i < 8 && !f; i++) { for (j = 0; j < 8 && !f; j++) { if (i == j) continue; for (k = 0; k < 0x100 && !f; k++) { if ((BIT(i) | BIT(j)) & k) continue; f += test_logical_ipi_multi_target(BIT(i), BIT(j), false, BIT(i) | BIT(j) | k, vector); if (f) break; f += test_logical_ipi_multi_target(BIT(i) | BIT(j), BIT(i) | BIT(j), false, BIT(i) | BIT(j) | k, vector); } } } report(!f, "IPI to multiple targets using logical flat mode"); f = 0; for (c = 0; c < 0xf && !f; c++) { for (i = 0; i < 4 && !f; i++) { for (j = 0; j < 4 && !f; j++) { if (i == j) continue; for (k = 0; k < 0x10 && !f; k++) { if ((BIT(i) | BIT(j)) & k) continue; f += test_logical_ipi_multi_target(c << 4 | BIT(i), c << 4 | BIT(j), true, c << 4 | BIT(i) | BIT(j) | k, vector); if (f) break; f += test_logical_ipi_multi_target(c << 4 | BIT(i) | BIT(j), c << 4 | BIT(i) | BIT(j), true, c << 4 | BIT(i) | BIT(j) | k, vector); } } } } report(!f, "IPI to multiple targets using logical cluster mode"); } static void set_xapic_physical_id(void *apic_id) { apic_write(APIC_ID, (unsigned long)apic_id << 24); } static void handle_aliased_ipi(isr_regs_t *regs) { u32 apic_id = apic_read(APIC_ID) >> 24; if (apic_id == 0xff) apic_id = smp_id(); else apic_id++; apic_write(APIC_ID, (unsigned long)apic_id << 24); /* * Handle the IPI after updating the APIC ID, as the IPI count acts as * synchronization barrier before vCPU0 sends the next IPI. */ handle_ipi(regs); } static void test_aliased_xapic_physical_ipi(void) { u8 vector = 0xf1; int i, f; if (cpu_count() < 2) return; /* * All vCPUs must be in xAPIC mode, i.e. simply resetting this vCPUs * APIC is not sufficient. */ if (is_x2apic_enabled()) return; /* * By default, KVM doesn't follow the x86 APIC architecture for aliased * APIC IDs if userspace has enabled KVM_X2APIC_API_USE_32BIT_IDS. * If x2APIC is supported, assume the userspace VMM has enabled 32-bit * IDs and thus activated KVM's quirk. Delete this code to run the * aliasing test on x2APIC CPUs, e.g. to run it on bare metal. */ if (this_cpu_has(X86_FEATURE_X2APIC)) return; handle_irq(vector, handle_aliased_ipi); /* * Set both vCPU0 and vCPU1's APIC IDs to 0, then start the chain * reaction of IPIs from APIC ID 0..255. Each vCPU will increment its * APIC ID in the handler, and then "reset" to its original ID (using * smp_id()) after the last IPI. Using on_cpu() to set vCPU1's ID * after this point won't work due to on_cpu() using physical mode. */ on_cpu(1, set_xapic_physical_id, (void *)0ul); set_xapic_physical_id((void *)0ul); f = 0; for (i = 0; i < 0x100; i++) f += test_fixed_ipi(APIC_DEST_PHYSICAL, i, vector, 2, "physical"); report(!f, "IPI to aliased xAPIC physical IDs"); } typedef void (*apic_test_fn)(void); int main(void) { bool is_x2apic = is_x2apic_enabled(); u32 spiv = apic_read(APIC_SPIV); int i; const apic_test_fn tests[] = { test_lapic_existence, test_apic_disable, test_enable_x2apic, test_self_ipi_xapic, test_self_ipi_x2apic, test_physical_broadcast, test_logical_ipi_xapic, test_pv_ipi, test_sti_nmi, test_multiple_nmi, test_pending_nmi, test_apic_timer_one_shot, test_apic_change_mode, test_tsc_deadline_timer, /* * KVM may disable APICv if the APIC ID and/or APIC_BASE is * modified, keep these tests at the end so that the test as a * whole provides coverage for APICv (when it's enabled). */ test_apic_id, test_apicbase, test_aliased_xapic_physical_ipi, }; assert_msg(is_apic_hw_enabled() && is_apic_sw_enabled(), "APIC should be fully enabled by startup code."); setup_vm(); mask_pic_interrupts(); sti(); for (i = 0; i < ARRAY_SIZE(tests); i++) { tests[i](); if (is_x2apic) enable_x2apic(); else reset_apic(); apic_write(APIC_SPIV, spiv); } return report_summary(); }