#include "libcflat.h" #define smp_id() 0 #define true 1 #define false 0 static _Bool verbose = false; typedef unsigned long pt_element_t; #define PAGE_SIZE ((pt_element_t)4096) #define PAGE_MASK (~(PAGE_SIZE-1)) #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK)) #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21)) #define PT_PRESENT_MASK ((pt_element_t)1 << 0) #define PT_WRITABLE_MASK ((pt_element_t)1 << 1) #define PT_USER_MASK ((pt_element_t)1 << 2) #define PT_ACCESSED_MASK ((pt_element_t)1 << 5) #define PT_DIRTY_MASK ((pt_element_t)1 << 6) #define PT_PSE_MASK ((pt_element_t)1 << 7) #define PT_NX_MASK ((pt_element_t)1 << 63) #define CR0_WP_MASK (1UL << 16) #define PFERR_PRESENT_MASK (1U << 0) #define PFERR_WRITE_MASK (1U << 1) #define PFERR_USER_MASK (1U << 2) #define PFERR_RESERVED_MASK (1U << 3) #define PFERR_FETCH_MASK (1U << 4) #define MSR_EFER 0xc0000080 #define EFER_NX_MASK (1ull << 11) /* * page table access check tests */ enum { AC_PTE_PRESENT, AC_PTE_WRITABLE, AC_PTE_USER, AC_PTE_ACCESSED, AC_PTE_DIRTY, AC_PTE_NX, AC_PTE_BIT51, AC_PDE_PRESENT, AC_PDE_WRITABLE, AC_PDE_USER, AC_PDE_ACCESSED, AC_PDE_DIRTY, AC_PDE_PSE, AC_PDE_NX, AC_PDE_BIT51, AC_ACCESS_USER, AC_ACCESS_WRITE, AC_ACCESS_FETCH, AC_ACCESS_TWICE, // AC_ACCESS_PTE, AC_CPU_EFER_NX, AC_CPU_CR0_WP, NR_AC_FLAGS }; const char *ac_names[] = { [AC_PTE_PRESENT] = "pte.p", [AC_PTE_ACCESSED] = "pte.a", [AC_PTE_WRITABLE] = "pte.rw", [AC_PTE_USER] = "pte.user", [AC_PTE_DIRTY] = "pte.d", [AC_PTE_NX] = "pte.nx", [AC_PTE_BIT51] = "pte.51", [AC_PDE_PRESENT] = "pde.p", [AC_PDE_ACCESSED] = "pde.a", [AC_PDE_WRITABLE] = "pde.rw", [AC_PDE_USER] = "pde.user", [AC_PDE_DIRTY] = "pde.d", [AC_PDE_PSE] = "pde.pse", [AC_PDE_NX] = "pde.nx", [AC_PDE_BIT51] = "pde.51", [AC_ACCESS_WRITE] = "write", [AC_ACCESS_USER] = "user", [AC_ACCESS_FETCH] = "fetch", [AC_ACCESS_TWICE] = "twice", [AC_CPU_EFER_NX] = "efer.nx", [AC_CPU_CR0_WP] = "cr0.wp", }; static inline void *va(pt_element_t phys) { return (void *)phys; } static unsigned long read_cr0() { unsigned long cr0; asm volatile ("mov %%cr0, %0" : "=r"(cr0)); return cr0; } static void write_cr0(unsigned long cr0) { asm volatile ("mov %0, %%cr0" : : "r"(cr0)); } typedef struct { unsigned short offset0; unsigned short selector; unsigned short ist : 3; unsigned short : 5; unsigned short type : 4; unsigned short : 1; unsigned short dpl : 2; unsigned short p : 1; unsigned short offset1; unsigned offset2; unsigned reserved; } idt_entry_t; typedef struct { pt_element_t pt_pool; unsigned pt_pool_size; unsigned pt_pool_current; } ac_pool_t; typedef struct { unsigned flags[NR_AC_FLAGS]; void *virt; pt_element_t phys; pt_element_t *ptep; pt_element_t expected_pte; pt_element_t *pdep; pt_element_t expected_pde; pt_element_t ignore_pde; int expected_fault; unsigned expected_error; idt_entry_t idt[256]; } ac_test_t; typedef struct { unsigned short limit; unsigned long linear_addr; } __attribute__((packed)) descriptor_table_t; static void ac_test_show(ac_test_t *at); void lidt(idt_entry_t *idt, int nentries) { descriptor_table_t dt; dt.limit = nentries * sizeof(*idt) - 1; dt.linear_addr = (unsigned long)idt; asm volatile ("lidt %0" : : "m"(dt)); } unsigned short read_cs() { unsigned short r; asm volatile ("mov %%cs, %0" : "=r"(r)); return r; } unsigned long long rdmsr(unsigned index) { unsigned a, d; asm volatile("rdmsr" : "=a"(a), "=d"(d) : "c"(index)); return ((unsigned long long)d << 32) | a; } void wrmsr(unsigned index, unsigned long long val) { unsigned a = val, d = val >> 32; asm volatile("wrmsr" : : "a"(a), "d"(d), "c"(index)); } void set_idt_entry(idt_entry_t *e, void *addr, int dpl) { memset(e, 0, sizeof *e); e->offset0 = (unsigned long)addr; e->selector = read_cs(); e->ist = 0; e->type = 14; e->dpl = dpl; e->p = 1; e->offset1 = (unsigned long)addr >> 16; e->offset2 = (unsigned long)addr >> 32; } void set_cr0_wp(int wp) { unsigned long cr0 = read_cr0(); cr0 &= ~CR0_WP_MASK; if (wp) cr0 |= CR0_WP_MASK; write_cr0(cr0); } void set_efer_nx(int nx) { unsigned long long efer; efer = rdmsr(MSR_EFER); efer &= ~EFER_NX_MASK; if (nx) efer |= EFER_NX_MASK; wrmsr(MSR_EFER, efer); } static void ac_env_int(ac_pool_t *pool) { static idt_entry_t idt[256]; memset(idt, 0, sizeof(idt)); lidt(idt, 256); extern char page_fault, kernel_entry; set_idt_entry(&idt[14], &page_fault, 0); set_idt_entry(&idt[0x20], &kernel_entry, 3); pool->pt_pool = 33 * 1024 * 1024; pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool; pool->pt_pool_current = 0; } void ac_test_init(ac_test_t *at, void *virt) { wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK); set_cr0_wp(1); for (int i = 0; i < NR_AC_FLAGS; ++i) at->flags[i] = 0; at->virt = virt; at->phys = 32 * 1024 * 1024; } int ac_test_bump_one(ac_test_t *at) { for (int i = 0; i < NR_AC_FLAGS; ++i) if (!at->flags[i]) { at->flags[i] = 1; return 1; } else at->flags[i] = 0; return 0; } _Bool ac_test_legal(ac_test_t *at) { if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_ACCESS_WRITE]) return false; return true; } int ac_test_bump(ac_test_t *at) { int ret; ret = ac_test_bump_one(at); while (ret && !ac_test_legal(at)) ret = ac_test_bump_one(at); return ret; } unsigned long read_cr3() { unsigned long cr3; asm volatile ("mov %%cr3, %0" : "=r"(cr3)); return cr3; } void invlpg(void *addr) { asm volatile ("invlpg (%0)" : : "r"(addr)); } pt_element_t ac_test_alloc_pt(ac_pool_t *pool) { pt_element_t ret = pool->pt_pool + pool->pt_pool_current; pool->pt_pool_current += PAGE_SIZE; return ret; } _Bool ac_test_enough_room(ac_pool_t *pool) { return pool->pt_pool_current + 4 * PAGE_SIZE <= pool->pt_pool_size; } void ac_test_reset_pt_pool(ac_pool_t *pool) { pool->pt_pool_current = 0; } void ac_set_expected_status(ac_test_t *at) { int pde_valid, pte_valid; invlpg(at->virt); if (at->ptep) at->expected_pte = *at->ptep; at->expected_pde = *at->pdep; at->ignore_pde = 0; at->expected_fault = 0; at->expected_error = PFERR_PRESENT_MASK; pde_valid = at->flags[AC_PDE_PRESENT] && !at->flags[AC_PDE_BIT51] && !(at->flags[AC_PDE_NX] && !at->flags[AC_CPU_EFER_NX]); pte_valid = pde_valid && at->flags[AC_PTE_PRESENT] && !at->flags[AC_PTE_BIT51] && !(at->flags[AC_PTE_NX] && !at->flags[AC_CPU_EFER_NX]); if (at->flags[AC_ACCESS_TWICE]) { if (pde_valid) { at->expected_pde |= PT_ACCESSED_MASK; if (pte_valid) at->expected_pte |= PT_ACCESSED_MASK; } } if (at->flags[AC_ACCESS_USER]) at->expected_error |= PFERR_USER_MASK; if (at->flags[AC_ACCESS_WRITE]) at->expected_error |= PFERR_WRITE_MASK; if (at->flags[AC_ACCESS_FETCH]) at->expected_error |= PFERR_FETCH_MASK; if (!at->flags[AC_PDE_PRESENT]) { at->expected_fault = 1; at->expected_error &= ~PFERR_PRESENT_MASK; } else if (!pde_valid) { at->expected_fault = 1; at->expected_error |= PFERR_RESERVED_MASK; } if (at->flags[AC_ACCESS_USER] && !at->flags[AC_PDE_USER]) at->expected_fault = 1; if (at->flags[AC_ACCESS_WRITE] && !at->flags[AC_PDE_WRITABLE] && (at->flags[AC_CPU_CR0_WP] || at->flags[AC_ACCESS_USER])) at->expected_fault = 1; if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_PDE_NX]) at->expected_fault = 1; if (!at->flags[AC_PDE_ACCESSED]) at->ignore_pde = PT_ACCESSED_MASK; if (!pde_valid) goto fault; if (!at->expected_fault) at->expected_pde |= PT_ACCESSED_MASK; if (at->flags[AC_PDE_PSE]) { if (at->flags[AC_ACCESS_WRITE] && !at->expected_fault) at->expected_pde |= PT_DIRTY_MASK; goto no_pte; } if (!at->flags[AC_PTE_PRESENT]) { at->expected_fault = 1; at->expected_error &= ~PFERR_PRESENT_MASK; } else if (!pte_valid) { at->expected_fault = 1; at->expected_error |= PFERR_RESERVED_MASK; } if (at->flags[AC_ACCESS_USER] && !at->flags[AC_PTE_USER]) at->expected_fault = 1; if (at->flags[AC_ACCESS_WRITE] && !at->flags[AC_PTE_WRITABLE] && (at->flags[AC_CPU_CR0_WP] || at->flags[AC_ACCESS_USER])) at->expected_fault = 1; if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_PTE_NX]) at->expected_fault = 1; if (at->expected_fault) goto fault; at->expected_pte |= PT_ACCESSED_MASK; if (at->flags[AC_ACCESS_WRITE]) at->expected_pte |= PT_DIRTY_MASK; no_pte: fault: if (!at->expected_fault) at->ignore_pde = 0; if (!at->flags[AC_CPU_EFER_NX]) at->expected_error &= ~PFERR_FETCH_MASK; } void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page, u64 pt_page) { unsigned long root = read_cr3(); if (!ac_test_enough_room(pool)) ac_test_reset_pt_pool(pool); at->ptep = 0; for (int i = 4; i >= 1 && (i >= 2 || !at->flags[AC_PDE_PSE]); --i) { pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK); unsigned index = ((unsigned long)at->virt >> (12 + (i-1) * 9)) & 511; pt_element_t pte = 0; switch (i) { case 4: case 3: pte = pd_page ? pd_page : ac_test_alloc_pt(pool); pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK; break; case 2: if (!at->flags[AC_PDE_PSE]) pte = pt_page ? pt_page : ac_test_alloc_pt(pool); else { pte = at->phys & PT_PSE_BASE_ADDR_MASK; pte |= PT_PSE_MASK; } if (at->flags[AC_PDE_PRESENT]) pte |= PT_PRESENT_MASK; if (at->flags[AC_PDE_WRITABLE]) pte |= PT_WRITABLE_MASK; if (at->flags[AC_PDE_USER]) pte |= PT_USER_MASK; if (at->flags[AC_PDE_ACCESSED]) pte |= PT_ACCESSED_MASK; if (at->flags[AC_PDE_DIRTY]) pte |= PT_DIRTY_MASK; if (at->flags[AC_PDE_NX]) pte |= PT_NX_MASK; if (at->flags[AC_PDE_BIT51]) pte |= 1ull << 51; at->pdep = &vroot[index]; break; case 1: pte = at->phys & PT_BASE_ADDR_MASK; if (at->flags[AC_PTE_PRESENT]) pte |= PT_PRESENT_MASK; if (at->flags[AC_PTE_WRITABLE]) pte |= PT_WRITABLE_MASK; if (at->flags[AC_PTE_USER]) pte |= PT_USER_MASK; if (at->flags[AC_PTE_ACCESSED]) pte |= PT_ACCESSED_MASK; if (at->flags[AC_PTE_DIRTY]) pte |= PT_DIRTY_MASK; if (at->flags[AC_PTE_NX]) pte |= PT_NX_MASK; if (at->flags[AC_PTE_BIT51]) pte |= 1ull << 51; at->ptep = &vroot[index]; break; } vroot[index] = pte; root = vroot[index]; } ac_set_expected_status(at); } static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool) { __ac_setup_specific_pages(at, pool, 0, 0); } static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page, u64 pt_page) { return __ac_setup_specific_pages(at, pool, pd_page, pt_page); } static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond, const char *fmt, ...) { va_list ap; char buf[500]; if (!*success_ret) { return; } if (!cond) { return; } *success_ret = false; if (!verbose) { ac_test_show(at); } va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); printf("FAIL: %s\n", buf); } static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore) { pte1 &= ~ignore; pte2 &= ~ignore; return pte1 == pte2; } int ac_test_do_access(ac_test_t *at) { static unsigned unique = 42; int fault = 0; unsigned e; static unsigned char user_stack[4096]; unsigned long rsp; _Bool success = true; ++unique; *((unsigned char *)at->phys) = 0xc3; /* ret */ unsigned r = unique; set_cr0_wp(at->flags[AC_CPU_CR0_WP]); set_efer_nx(at->flags[AC_CPU_EFER_NX]); if (at->flags[AC_ACCESS_TWICE]) { asm volatile ( "mov $fixed2, %%rsi \n\t" "mov (%[addr]), %[reg] \n\t" "fixed2:" : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e) : [addr]"r"(at->virt) : "rsi" ); fault = 0; } asm volatile ("mov $fixed1, %%rsi \n\t" "mov %%rsp, %%rdx \n\t" "cmp $0, %[user] \n\t" "jz do_access \n\t" "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t" "pushq %[user_ds] \n\t" "pushq %[user_stack_top] \n\t" "pushfq \n\t" "pushq %[user_cs] \n\t" "pushq $do_access \n\t" "iretq \n" "do_access: \n\t" "cmp $0, %[fetch] \n\t" "jnz 2f \n\t" "cmp $0, %[write] \n\t" "jnz 1f \n\t" "mov (%[addr]), %[reg] \n\t" "jmp done \n\t" "1: mov %[reg], (%[addr]) \n\t" "jmp done \n\t" "2: call *%[addr] \n\t" "done: \n" "fixed1: \n" "int %[kernel_entry_vector] \n\t" "back_to_kernel:" : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp) : [addr]"r"(at->virt), [write]"r"(at->flags[AC_ACCESS_WRITE]), [user]"r"(at->flags[AC_ACCESS_USER]), [fetch]"r"(at->flags[AC_ACCESS_FETCH]), [user_ds]"i"(32+3), [user_cs]"i"(24+3), [user_stack_top]"r"(user_stack + sizeof user_stack), [kernel_entry_vector]"i"(0x20) : "rsi"); asm volatile (".section .text.pf \n\t" "page_fault: \n\t" "pop %rbx \n\t" "mov %rsi, (%rsp) \n\t" "movl $1, %eax \n\t" "iretq \n\t" ".section .text"); asm volatile (".section .text.entry \n\t" "kernel_entry: \n\t" "mov %rdx, %rsp \n\t" "jmp back_to_kernel \n\t" ".section .text"); ac_test_check(at, &success, fault && !at->expected_fault, "unexpected fault"); ac_test_check(at, &success, !fault && at->expected_fault, "unexpected access"); ac_test_check(at, &success, fault && e != at->expected_error, "error code %x expected %x", e, at->expected_error); ac_test_check(at, &success, at->ptep && *at->ptep != at->expected_pte, "pte %x expected %x", *at->ptep, at->expected_pte); ac_test_check(at, &success, !pt_match(*at->pdep, at->expected_pde, at->ignore_pde), "pde %x expected %x", *at->pdep, at->expected_pde); if (success && verbose) { printf("PASS\n"); } return success; } static void ac_test_show(ac_test_t *at) { char line[5000]; *line = 0; strcat(line, "test"); for (int i = 0; i < NR_AC_FLAGS; ++i) if (at->flags[i]) { strcat(line, " "); strcat(line, ac_names[i]); } strcat(line, ": "); printf("%s", line); } /* * This test case is used to triger the bug which is fixed by * commit e09e90a5 in the kvm tree */ static int corrupt_hugepage_triger(ac_pool_t *pool) { ac_test_t at1, at2; ac_test_init(&at1, (void *)(0x123400000000)); ac_test_init(&at2, (void *)(0x666600000000)); at2.flags[AC_CPU_CR0_WP] = 1; at2.flags[AC_PDE_PSE] = 1; at2.flags[AC_PDE_PRESENT] = 1; ac_test_setup_pte(&at2, pool); if (!ac_test_do_access(&at2)) goto err; at1.flags[AC_CPU_CR0_WP] = 1; at1.flags[AC_PDE_PSE] = 1; at1.flags[AC_PDE_WRITABLE] = 1; at1.flags[AC_PDE_PRESENT] = 1; ac_test_setup_pte(&at1, pool); if (!ac_test_do_access(&at1)) goto err; at1.flags[AC_ACCESS_WRITE] = 1; ac_set_expected_status(&at1); if (!ac_test_do_access(&at1)) goto err; at2.flags[AC_ACCESS_WRITE] = 1; ac_set_expected_status(&at2); if (!ac_test_do_access(&at2)) goto err; return 1; err: printf("corrupt_hugepage_triger test fail\n"); return 0; } /* * This test case is used to triger the bug which is fixed by * commit 3ddf6c06e13e in the kvm tree */ static int check_pfec_on_prefetch_pte(ac_pool_t *pool) { ac_test_t at1, at2; ac_test_init(&at1, (void *)(0x123406001000)); ac_test_init(&at2, (void *)(0x123406003000)); at1.flags[AC_PDE_PRESENT] = 1; at1.flags[AC_PTE_PRESENT] = 1; ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024); at2.flags[AC_PDE_PRESENT] = 1; at2.flags[AC_PTE_NX] = 1; at2.flags[AC_PTE_PRESENT] = 1; ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024); if (!ac_test_do_access(&at1)) { printf("%s: prepare fail\n", __FUNCTION__); goto err; } if (!ac_test_do_access(&at2)) { printf("%s: check PFEC on prefetch pte path fail\n", __FUNCTION__); goto err; } return 1; err: return 0; } int ac_test_exec(ac_test_t *at, ac_pool_t *pool) { int r; if (verbose) { ac_test_show(at); } ac_test_setup_pte(at, pool); r = ac_test_do_access(at); return r; } typedef int (*ac_test_fn)(ac_pool_t *pool); const ac_test_fn ac_test_cases[] = { corrupt_hugepage_triger, check_pfec_on_prefetch_pte, }; int ac_test_run(void) { ac_test_t at; ac_pool_t pool; int i, tests, successes; printf("run\n"); tests = successes = 0; ac_env_int(&pool); ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id())); do { ++tests; successes += ac_test_exec(&at, &pool); } while (ac_test_bump(&at)); for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) { ++tests; successes += ac_test_cases[i](&pool); } printf("\n%d tests, %d failures\n", tests, tests - successes); return successes == tests; } int main() { int r; printf("starting test\n\n"); r = ac_test_run(); return r ? 0 : 1; }