#include "libcflat.h" #include "desc.h" #include "processor.h" #include "asm/page.h" #include "x86/vm.h" #include "access.h" static bool verbose = false; typedef unsigned long pt_element_t; static int invalid_mask; /* Test code/data is at 32MiB, paging structures at 33MiB. */ #define AT_CODE_DATA_PHYS 32 * 1024 * 1024 #define AT_PAGING_STRUCTURES_PHYS 33 * 1024 * 1024 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 36) - 1) & PAGE_MASK)) #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21)) #define PFERR_PRESENT_MASK (1U << 0) #define PFERR_WRITE_MASK (1U << 1) #define PFERR_USER_MASK (1U << 2) #define PFERR_RESERVED_MASK (1U << 3) #define PFERR_FETCH_MASK (1U << 4) #define PFERR_PK_MASK (1U << 5) #define MSR_EFER 0xc0000080 #define EFER_NX_MASK (1ull << 11) #define PT_INDEX(address, level) \ (((address) >> (12 + ((level)-1) * 9)) & 511) /* * Page table access check tests. Each number/bit represent an individual * test case. The main test will bump a counter by 1 to run all permutations * of the below test cases (sans illegal combinations). * * Keep the PRESENT and reserved bits in the higher numbers so that they aren't * toggled on every test, e.g. to keep entries in the TLB. */ enum { AC_PTE_WRITABLE_BIT, AC_PTE_USER_BIT, AC_PTE_ACCESSED_BIT, AC_PTE_DIRTY_BIT, AC_PTE_NX_BIT, AC_PTE_PRESENT_BIT, AC_PTE_BIT51_BIT, AC_PTE_BIT36_BIT, AC_PDE_WRITABLE_BIT, AC_PDE_USER_BIT, AC_PDE_ACCESSED_BIT, AC_PDE_DIRTY_BIT, AC_PDE_PSE_BIT, AC_PDE_NX_BIT, AC_PDE_PRESENT_BIT, AC_PDE_BIT51_BIT, AC_PDE_BIT36_BIT, AC_PDE_BIT13_BIT, /* * special test case to DISABLE writable bit on page directory * pointer table entry. */ AC_PDPTE_NO_WRITABLE_BIT, AC_PKU_AD_BIT, AC_PKU_WD_BIT, AC_PKU_PKEY_BIT, AC_ACCESS_USER_BIT, AC_ACCESS_WRITE_BIT, AC_ACCESS_FETCH_BIT, AC_ACCESS_TWICE_BIT, AC_CPU_EFER_NX_BIT, AC_CPU_CR0_WP_BIT, AC_CPU_CR4_SMEP_BIT, AC_CPU_CR4_PKE_BIT, AC_FEP_BIT, NR_AC_FLAGS, }; #define AC_PTE_PRESENT_MASK (1 << AC_PTE_PRESENT_BIT) #define AC_PTE_WRITABLE_MASK (1 << AC_PTE_WRITABLE_BIT) #define AC_PTE_USER_MASK (1 << AC_PTE_USER_BIT) #define AC_PTE_ACCESSED_MASK (1 << AC_PTE_ACCESSED_BIT) #define AC_PTE_DIRTY_MASK (1 << AC_PTE_DIRTY_BIT) #define AC_PTE_NX_MASK (1 << AC_PTE_NX_BIT) #define AC_PTE_BIT51_MASK (1 << AC_PTE_BIT51_BIT) #define AC_PTE_BIT36_MASK (1 << AC_PTE_BIT36_BIT) #define AC_PDE_PRESENT_MASK (1 << AC_PDE_PRESENT_BIT) #define AC_PDE_WRITABLE_MASK (1 << AC_PDE_WRITABLE_BIT) #define AC_PDE_USER_MASK (1 << AC_PDE_USER_BIT) #define AC_PDE_ACCESSED_MASK (1 << AC_PDE_ACCESSED_BIT) #define AC_PDE_DIRTY_MASK (1 << AC_PDE_DIRTY_BIT) #define AC_PDE_PSE_MASK (1 << AC_PDE_PSE_BIT) #define AC_PDE_NX_MASK (1 << AC_PDE_NX_BIT) #define AC_PDE_BIT51_MASK (1 << AC_PDE_BIT51_BIT) #define AC_PDE_BIT36_MASK (1 << AC_PDE_BIT36_BIT) #define AC_PDE_BIT13_MASK (1 << AC_PDE_BIT13_BIT) #define AC_PDPTE_NO_WRITABLE_MASK (1 << AC_PDPTE_NO_WRITABLE_BIT) #define AC_PKU_AD_MASK (1 << AC_PKU_AD_BIT) #define AC_PKU_WD_MASK (1 << AC_PKU_WD_BIT) #define AC_PKU_PKEY_MASK (1 << AC_PKU_PKEY_BIT) #define AC_ACCESS_USER_MASK (1 << AC_ACCESS_USER_BIT) #define AC_ACCESS_WRITE_MASK (1 << AC_ACCESS_WRITE_BIT) #define AC_ACCESS_FETCH_MASK (1 << AC_ACCESS_FETCH_BIT) #define AC_ACCESS_TWICE_MASK (1 << AC_ACCESS_TWICE_BIT) #define AC_CPU_EFER_NX_MASK (1 << AC_CPU_EFER_NX_BIT) #define AC_CPU_CR0_WP_MASK (1 << AC_CPU_CR0_WP_BIT) #define AC_CPU_CR4_SMEP_MASK (1 << AC_CPU_CR4_SMEP_BIT) #define AC_CPU_CR4_PKE_MASK (1 << AC_CPU_CR4_PKE_BIT) #define AC_FEP_MASK (1 << AC_FEP_BIT) const char *ac_names[] = { [AC_PTE_PRESENT_BIT] = "pte.p", [AC_PTE_ACCESSED_BIT] = "pte.a", [AC_PTE_WRITABLE_BIT] = "pte.rw", [AC_PTE_USER_BIT] = "pte.user", [AC_PTE_DIRTY_BIT] = "pte.d", [AC_PTE_NX_BIT] = "pte.nx", [AC_PTE_BIT51_BIT] = "pte.51", [AC_PTE_BIT36_BIT] = "pte.36", [AC_PDE_PRESENT_BIT] = "pde.p", [AC_PDE_ACCESSED_BIT] = "pde.a", [AC_PDE_WRITABLE_BIT] = "pde.rw", [AC_PDE_USER_BIT] = "pde.user", [AC_PDE_DIRTY_BIT] = "pde.d", [AC_PDE_PSE_BIT] = "pde.pse", [AC_PDE_NX_BIT] = "pde.nx", [AC_PDE_BIT51_BIT] = "pde.51", [AC_PDE_BIT36_BIT] = "pde.36", [AC_PDE_BIT13_BIT] = "pde.13", [AC_PDPTE_NO_WRITABLE_BIT] = "pdpte.ro", [AC_PKU_AD_BIT] = "pkru.ad", [AC_PKU_WD_BIT] = "pkru.wd", [AC_PKU_PKEY_BIT] = "pkey=1", [AC_ACCESS_WRITE_BIT] = "write", [AC_ACCESS_USER_BIT] = "user", [AC_ACCESS_FETCH_BIT] = "fetch", [AC_ACCESS_TWICE_BIT] = "twice", [AC_CPU_EFER_NX_BIT] = "efer.nx", [AC_CPU_CR0_WP_BIT] = "cr0.wp", [AC_CPU_CR4_SMEP_BIT] = "cr4.smep", [AC_CPU_CR4_PKE_BIT] = "cr4.pke", [AC_FEP_BIT] = "fep", }; static inline void *va(pt_element_t phys) { return (void *)phys; } typedef struct { pt_element_t pt_pool_pa; unsigned int pt_pool_current; int pt_levels; } ac_pt_env_t; typedef struct { unsigned flags; void *virt; pt_element_t phys; pt_element_t *ptep; pt_element_t expected_pte; pt_element_t *pdep; pt_element_t expected_pde; pt_element_t ignore_pde; int expected_fault; unsigned expected_error; int pt_levels; /* 5-level paging, 1-based to avoid math. */ pt_element_t page_tables[6]; } ac_test_t; typedef struct { unsigned short limit; unsigned long linear_addr; } __attribute__((packed)) descriptor_table_t; static void ac_test_show(ac_test_t *at); static unsigned long shadow_cr0; static unsigned long shadow_cr3; static unsigned long shadow_cr4; static unsigned long long shadow_efer; typedef void (*walk_fn)(pt_element_t *ptep, int level, unsigned long virt); /* Returns the size of the range covered by the last processed entry. */ static unsigned long walk_va(ac_test_t *at, int min_level, unsigned long virt, walk_fn callback, bool leaf_only) { unsigned long parent_pte = shadow_cr3; int i; for (i = at->pt_levels; i >= min_level; --i) { pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK); unsigned int index = PT_INDEX(virt, i); pt_element_t *ptep = &parent_pt[index]; assert(!leaf_only || (*ptep & PT_PRESENT_MASK)); if (!leaf_only || i == 1 || (*ptep & PT_PAGE_SIZE_MASK)) callback(ptep, i, virt); if (i == 1 || *ptep & PT_PAGE_SIZE_MASK) break; parent_pte = *ptep; } return 1ul << PGDIR_BITS(i); } static void walk_ptes(ac_test_t *at, unsigned long virt, unsigned long end, walk_fn callback) { unsigned long page_size; for ( ; virt < end; virt = ALIGN_DOWN(virt + page_size, page_size)) page_size = walk_va(at, 1, virt, callback, true); } static void set_cr0_wp(int wp) { unsigned long cr0 = shadow_cr0; cr0 &= ~X86_CR0_WP; if (wp) cr0 |= X86_CR0_WP; if (cr0 != shadow_cr0) { write_cr0(cr0); shadow_cr0 = cr0; } } static void clear_user_mask(pt_element_t *ptep, int level, unsigned long virt) { *ptep &= ~PT_USER_MASK; /* Flush to avoid spurious #PF */ invlpg((void*)virt); } static void set_user_mask(pt_element_t *ptep, int level, unsigned long virt) { *ptep |= PT_USER_MASK; /* Flush to avoid spurious #PF */ invlpg((void*)virt); } static unsigned set_cr4_smep(ac_test_t *at, int smep) { extern char stext, etext; unsigned long code_start = (unsigned long)&stext; unsigned long code_end = (unsigned long)&etext; unsigned long cr4 = shadow_cr4; unsigned r; cr4 &= ~X86_CR4_SMEP; if (smep) cr4 |= X86_CR4_SMEP; if (cr4 == shadow_cr4) return 0; if (smep) walk_ptes(at, code_start, code_end, clear_user_mask); r = write_cr4_safe(cr4); if (r || !smep) walk_ptes(at, code_start, code_end, set_user_mask); if (!r) shadow_cr4 = cr4; return r; } static void set_cr4_pke(int pke) { unsigned long cr4 = shadow_cr4; cr4 &= ~X86_CR4_PKE; if (pke) cr4 |= X86_CR4_PKE; if (cr4 == shadow_cr4) return; /* Check that protection keys do not affect accesses when CR4.PKE=0. */ if ((shadow_cr4 & X86_CR4_PKE) && !pke) write_pkru(0xfffffffc); write_cr4(cr4); shadow_cr4 = cr4; } static void set_efer_nx(int nx) { unsigned long long efer = shadow_efer; efer &= ~EFER_NX_MASK; if (nx) efer |= EFER_NX_MASK; if (efer != shadow_efer) { wrmsr(MSR_EFER, efer); shadow_efer = efer; } } static void ac_env_int(ac_pt_env_t *pt_env, int page_table_levels) { extern char page_fault, kernel_entry; set_idt_entry(14, &page_fault, 0); set_idt_entry(0x20, &kernel_entry, 3); pt_env->pt_pool_pa = AT_PAGING_STRUCTURES_PHYS; pt_env->pt_pool_current = 0; pt_env->pt_levels = page_table_levels; } static pt_element_t ac_test_alloc_pt(ac_pt_env_t *pt_env) { pt_element_t pt; /* * Each test needs at most pt_levels-1 structures per virtual address, * and no existing scenario uses more than four addresses. */ assert(pt_env->pt_pool_current < (4 * (pt_env->pt_levels - 1))); pt = pt_env->pt_pool_pa + (pt_env->pt_pool_current * PAGE_SIZE); pt_env->pt_pool_current++; memset(va(pt), 0, PAGE_SIZE); return pt; } static void __ac_test_init(ac_test_t *at, unsigned long virt, ac_pt_env_t *pt_env, ac_test_t *buddy) { unsigned long buddy_virt = buddy ? (unsigned long)buddy->virt : 0; pt_element_t *root_pt = va(shadow_cr3 & PT_BASE_ADDR_MASK); int i; /* * The test infrastructure, e.g. this function, must use a different * top-level SPTE than the test, otherwise modifying SPTEs can affect * normal behavior, e.g. crash the test due to marking code SPTEs * USER when CR4.SMEP=1. */ assert(PT_INDEX(virt, pt_env->pt_levels) != PT_INDEX((unsigned long)__ac_test_init, pt_env->pt_levels)); set_efer_nx(1); set_cr0_wp(1); at->flags = 0; at->virt = (void *)virt; at->phys = AT_CODE_DATA_PHYS; at->pt_levels = pt_env->pt_levels; at->page_tables[0] = -1ull; at->page_tables[1] = -1ull; /* * Zap the existing top-level PTE as it may be reused from a previous * sub-test. This allows runtime PTE modification to assert that two * overlapping walks don't try to install different paging structures. */ root_pt[PT_INDEX(virt, pt_env->pt_levels)] = 0; for (i = at->pt_levels; i > 1; i--) { /* * Buddies can reuse any part of the walk that share the same * index. This is weird, but intentional, as several tests * want different walks to merge at lower levels. */ if (buddy && PT_INDEX(virt, i) == PT_INDEX(buddy_virt, i)) at->page_tables[i] = buddy->page_tables[i]; else at->page_tables[i] = ac_test_alloc_pt(pt_env); } } static void ac_test_init(ac_test_t *at, unsigned long virt, ac_pt_env_t *pt_env) { __ac_test_init(at, virt, pt_env, NULL); } static int ac_test_bump_one(ac_test_t *at) { at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask; return at->flags < (1 << NR_AC_FLAGS); } #define F(x) ((flags & x##_MASK) != 0) static bool ac_test_legal(ac_test_t *at) { int flags = at->flags; unsigned reserved; if (F(AC_CPU_CR4_SMEP)) return false; if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE)) return false; /* * Since we convert current page to kernel page when cr4.smep=1, * we can't switch to user mode. */ if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP)) return false; /* * Only test protection key faults if CR4.PKE=1. */ if (!F(AC_CPU_CR4_PKE) && (F(AC_PKU_AD) || F(AC_PKU_WD))) { return false; } /* * pde.bit13 checks handling of reserved bits in largepage PDEs. It is * meaningless if there is a PTE. */ if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13)) return false; /* * Shorten the test by avoiding testing too many reserved bit combinations. * Skip testing multiple reserved bits to shorten the test. Reserved bit * page faults are terminal and multiple reserved bits do not affect the * error code; the odds of a KVM bug are super low, and the odds of actually * being able to detect a bug are even lower. */ reserved = (AC_PDE_BIT51_MASK | AC_PDE_BIT36_MASK | AC_PDE_BIT13_MASK | AC_PTE_BIT51_MASK | AC_PTE_BIT36_MASK); if (!F(AC_CPU_EFER_NX)) reserved |= AC_PDE_NX_MASK | AC_PTE_NX_MASK; /* Only test one reserved bit at a time. */ reserved &= flags; if (reserved & (reserved - 1)) return false; return true; } static int ac_test_bump(ac_test_t *at) { int ret; do { ret = ac_test_bump_one(at); } while (ret && !ac_test_legal(at)); return ret; } static pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags, bool writable, bool user, bool executable) { bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER); pt_element_t expected = 0; if (F(AC_ACCESS_USER) && !user) at->expected_fault = 1; if (F(AC_ACCESS_WRITE) && !writable && !kwritable) at->expected_fault = 1; if (F(AC_ACCESS_FETCH) && !executable) at->expected_fault = 1; if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP)) at->expected_fault = 1; if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) { if (F(AC_PKU_AD)) { at->expected_fault = 1; at->expected_error |= PFERR_PK_MASK; } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) { at->expected_fault = 1; at->expected_error |= PFERR_PK_MASK; } } if (!at->expected_fault) { expected |= PT_ACCESSED_MASK; if (F(AC_ACCESS_WRITE)) expected |= PT_DIRTY_MASK; } return expected; } static void ac_emulate_access(ac_test_t *at, unsigned flags) { bool pde_valid, pte_valid; bool user, writable, executable; if (F(AC_ACCESS_USER)) at->expected_error |= PFERR_USER_MASK; if (F(AC_ACCESS_WRITE)) at->expected_error |= PFERR_WRITE_MASK; if (F(AC_ACCESS_FETCH)) at->expected_error |= PFERR_FETCH_MASK; if (!F(AC_PDE_ACCESSED)) at->ignore_pde = PT_ACCESSED_MASK; pde_valid = F(AC_PDE_PRESENT) && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT36) && !F(AC_PDE_BIT13) && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX)); if (!pde_valid) { at->expected_fault = 1; if (F(AC_PDE_PRESENT)) { at->expected_error |= PFERR_RESERVED_MASK; } else { at->expected_error &= ~PFERR_PRESENT_MASK; } goto fault; } writable = !F(AC_PDPTE_NO_WRITABLE) && F(AC_PDE_WRITABLE); user = F(AC_PDE_USER); executable = !F(AC_PDE_NX); if (F(AC_PDE_PSE)) { at->expected_pde |= ac_test_permissions(at, flags, writable, user, executable); goto no_pte; } at->expected_pde |= PT_ACCESSED_MASK; pte_valid = F(AC_PTE_PRESENT) && !F(AC_PTE_BIT51) && !F(AC_PTE_BIT36) && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX)); if (!pte_valid) { at->expected_fault = 1; if (F(AC_PTE_PRESENT)) { at->expected_error |= PFERR_RESERVED_MASK; } else { at->expected_error &= ~PFERR_PRESENT_MASK; } goto fault; } writable &= F(AC_PTE_WRITABLE); user &= F(AC_PTE_USER); executable &= !F(AC_PTE_NX); at->expected_pte |= ac_test_permissions(at, flags, writable, user, executable); no_pte: fault: if (!at->expected_fault) at->ignore_pde = 0; if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP)) at->expected_error &= ~PFERR_FETCH_MASK; } static void __ac_set_expected_status(ac_test_t *at, bool flush) { if (flush) invlpg(at->virt); if (at->ptep) at->expected_pte = *at->ptep; at->expected_pde = *at->pdep; at->ignore_pde = 0; at->expected_fault = 0; at->expected_error = PFERR_PRESENT_MASK; if (at->flags & AC_ACCESS_TWICE_MASK) { ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK); at->expected_fault = 0; at->expected_error = PFERR_PRESENT_MASK; at->ignore_pde = 0; } ac_emulate_access(at, at->flags); } static void ac_set_expected_status(ac_test_t *at) { __ac_set_expected_status(at, true); } static pt_element_t ac_get_pt(ac_test_t *at, int i, pt_element_t *ptep) { pt_element_t pte; pte = *ptep; if (pte && !(pte & PT_PAGE_SIZE_MASK) && (pte & PT_BASE_ADDR_MASK) != at->page_tables[i]) { printf("\nPT collision. VA = 0x%lx, level = %d, index = %ld, found PT = 0x%lx, want PT = 0x%lx\n", (unsigned long)at->virt, i, PT_INDEX((unsigned long)at->virt, i), pte, at->page_tables[i]); abort(); } /* * Preserve A/D bits to avoid writing upper level PTEs, * which cannot be unsyc'd when KVM uses shadow paging. */ pte = at->page_tables[i] | (pte & (PT_DIRTY_MASK | PT_ACCESSED_MASK)); return pte; } static void ac_test_setup_ptes(ac_test_t *at) { unsigned long parent_pte = shadow_cr3; int flags = at->flags; int i; at->ptep = 0; for (i = at->pt_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) { pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK); unsigned index = PT_INDEX((unsigned long)at->virt, i); pt_element_t *ptep = &parent_pt[index]; pt_element_t pte; switch (i) { case 5: case 4: pte = ac_get_pt(at, i, ptep); pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK; break; case 3: pte = ac_get_pt(at, i, ptep); pte |= PT_PRESENT_MASK | PT_USER_MASK; if (!F(AC_PDPTE_NO_WRITABLE)) pte |= PT_WRITABLE_MASK; break; case 2: if (!F(AC_PDE_PSE)) { pte = ac_get_pt(at, i, ptep); /* The protection key is ignored on non-leaf entries. */ if (F(AC_PKU_PKEY)) pte |= 2ull << 59; } else { pte = at->phys & PT_PSE_BASE_ADDR_MASK; pte |= PT_PAGE_SIZE_MASK; if (F(AC_PKU_PKEY)) pte |= 1ull << 59; } if (F(AC_PDE_PRESENT)) pte |= PT_PRESENT_MASK; if (F(AC_PDE_WRITABLE)) pte |= PT_WRITABLE_MASK; if (F(AC_PDE_USER)) pte |= PT_USER_MASK; if (F(AC_PDE_ACCESSED)) pte |= PT_ACCESSED_MASK; if (F(AC_PDE_DIRTY)) pte |= PT_DIRTY_MASK; if (F(AC_PDE_NX)) pte |= PT64_NX_MASK; if (F(AC_PDE_BIT51)) pte |= 1ull << 51; if (F(AC_PDE_BIT36)) pte |= 1ull << 36; if (F(AC_PDE_BIT13)) pte |= 1ull << 13; at->pdep = ptep; break; case 1: pte = at->phys & PT_BASE_ADDR_MASK; if (F(AC_PKU_PKEY)) pte |= 1ull << 59; if (F(AC_PTE_PRESENT)) pte |= PT_PRESENT_MASK; if (F(AC_PTE_WRITABLE)) pte |= PT_WRITABLE_MASK; if (F(AC_PTE_USER)) pte |= PT_USER_MASK; if (F(AC_PTE_ACCESSED)) pte |= PT_ACCESSED_MASK; if (F(AC_PTE_DIRTY)) pte |= PT_DIRTY_MASK; if (F(AC_PTE_NX)) pte |= PT64_NX_MASK; if (F(AC_PTE_BIT51)) pte |= 1ull << 51; if (F(AC_PTE_BIT36)) pte |= 1ull << 36; at->ptep = ptep; break; default: assert(0); } if (pte != *ptep) *ptep = pte; parent_pte = pte; } ac_set_expected_status(at); } static void __dump_pte(pt_element_t *ptep, int level, unsigned long virt) { printf("------L%d I%lu: %lx\n", level, PT_INDEX(virt, level), *ptep); } static void dump_mapping(ac_test_t *at) { unsigned long virt = (unsigned long)at->virt; int flags = at->flags; printf("Dump mapping: address: %p\n", at->virt); walk_va(at, F(AC_PDE_PSE) ? 2 : 1, virt, __dump_pte, false); } static void ac_test_check(ac_test_t *at, bool *success_ret, bool cond, const char *fmt, ...) { va_list ap; char buf[500]; if (!*success_ret) { return; } if (!cond) { return; } *success_ret = false; if (!verbose) { puts("\n"); ac_test_show(at); } va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); printf("FAIL: %s\n", buf); dump_mapping(at); } static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore) { pte1 &= ~ignore; pte2 &= ~ignore; return pte1 == pte2; } static int ac_test_do_access(ac_test_t *at) { static unsigned unique = 42; int fault = 0; unsigned e; static unsigned char user_stack[4096]; unsigned long rsp; bool success = true; int flags = at->flags; ++unique; if (!(unique & 65535)) { puts("."); } *((unsigned char *)at->phys) = 0xc3; /* ret */ unsigned r = unique; set_cr0_wp(F(AC_CPU_CR0_WP)); set_efer_nx(F(AC_CPU_EFER_NX)); set_cr4_pke(F(AC_CPU_CR4_PKE)); if (F(AC_CPU_CR4_PKE)) { /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */ write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) | (F(AC_PKU_AD) ? 4 : 0)); } set_cr4_smep(at, F(AC_CPU_CR4_SMEP)); if (F(AC_ACCESS_TWICE)) { asm volatile ("mov $fixed2, %%rsi \n\t" "cmp $0, %[fep] \n\t" "jz 1f \n\t" KVM_FEP "1: mov (%[addr]), %[reg] \n\t" "fixed2:" : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e) : [addr]"r"(at->virt), [fep]"r"(F(AC_FEP)) : "rsi"); fault = 0; } asm volatile ("mov $fixed1, %%rsi \n\t" "mov %%rsp, %[rsp0] \n\t" "cmp $0, %[user] \n\t" "jz do_access \n\t" "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t" "pushq %[user_ds] \n\t" "pushq %[user_stack_top] \n\t" "pushfq \n\t" "pushq %[user_cs] \n\t" "pushq $do_access \n\t" "iretq \n" "do_access: \n\t" "cmp $0, %[fetch] \n\t" "jnz 2f \n\t" "cmp $0, %[write] \n\t" "jnz 1f \n\t" "cmp $0, %[fep] \n\t" "jz 0f \n\t" KVM_FEP "0: mov (%[addr]), %[reg] \n\t" "jmp done \n\t" "1: cmp $0, %[fep] \n\t" "jz 0f \n\t" KVM_FEP "0: mov %[reg], (%[addr]) \n\t" "jmp done \n\t" "2: call *%[addr] \n\t" "done: \n" "fixed1: \n" "int %[kernel_entry_vector] \n\t" ".section .text.entry \n\t" "kernel_entry: \n\t" "mov %[rsp0], %%rsp \n\t" "jmp back_to_kernel \n\t" ".section .text \n\t" "back_to_kernel:" : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp), [rsp0]"=m"(tss[0].rsp0) : [addr]"r"(at->virt), [write]"r"(F(AC_ACCESS_WRITE)), [user]"r"(F(AC_ACCESS_USER)), [fetch]"r"(F(AC_ACCESS_FETCH)), [fep]"r"(F(AC_FEP)), [user_ds]"i"(USER_DS), [user_cs]"i"(USER_CS), [user_stack_top]"r"(user_stack + sizeof user_stack), [kernel_entry_vector]"i"(0x20) : "rsi"); asm volatile (".section .text.pf \n\t" "page_fault: \n\t" "pop %rbx \n\t" "mov %rsi, (%rsp) \n\t" "movl $1, %eax \n\t" "iretq \n\t" ".section .text"); ac_test_check(at, &success, fault && !at->expected_fault, "unexpected fault"); ac_test_check(at, &success, !fault && at->expected_fault, "unexpected access"); ac_test_check(at, &success, fault && e != at->expected_error, "error code %x expected %x", e, at->expected_error); if (at->ptep) ac_test_check(at, &success, *at->ptep != at->expected_pte, "pte %x expected %x", *at->ptep, at->expected_pte); ac_test_check(at, &success, !pt_match(*at->pdep, at->expected_pde, at->ignore_pde), "pde %x expected %x", *at->pdep, at->expected_pde); if (success && verbose) { if (at->expected_fault) { printf("PASS (%x)\n", at->expected_error); } else { printf("PASS\n"); } } return success; } static void ac_test_show(ac_test_t *at) { char line[5000]; *line = 0; strcat(line, "test"); for (int i = 0; i < NR_AC_FLAGS; ++i) if (at->flags & (1 << i)) { strcat(line, " "); strcat(line, ac_names[i]); } strcat(line, ": "); printf("%s", line); } /* * This test case is used to trigger the bug which is fixed by * commit e09e90a5 in the kvm tree */ static int corrupt_hugepage_trigger(ac_pt_env_t *pt_env) { ac_test_t at1, at2; ac_test_init(&at1, 0xffff923400000000ul, pt_env); __ac_test_init(&at2, 0xffffe66600000000ul, pt_env, &at1); at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK; ac_test_setup_ptes(&at2); if (!ac_test_do_access(&at2)) goto err; at1.flags = at2.flags | AC_PDE_WRITABLE_MASK; ac_test_setup_ptes(&at1); if (!ac_test_do_access(&at1)) goto err; at1.flags |= AC_ACCESS_WRITE_MASK; ac_set_expected_status(&at1); if (!ac_test_do_access(&at1)) goto err; at2.flags |= AC_ACCESS_WRITE_MASK; ac_set_expected_status(&at2); if (!ac_test_do_access(&at2)) goto err; return 1; err: printf("corrupt_hugepage_trigger test fail\n"); return 0; } /* * This test case is used to trigger the bug which is fixed by * commit 3ddf6c06e13e in the kvm tree */ static int check_pfec_on_prefetch_pte(ac_pt_env_t *pt_env) { ac_test_t at1, at2; ac_test_init(&at1, 0xffff923406001000ul, pt_env); __ac_test_init(&at2, 0xffff923406003000ul, pt_env, &at1); at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK; ac_test_setup_ptes(&at1); at2.flags = at1.flags | AC_PTE_NX_MASK; ac_test_setup_ptes(&at2); if (!ac_test_do_access(&at1)) { printf("%s: prepare fail\n", __FUNCTION__); goto err; } if (!ac_test_do_access(&at2)) { printf("%s: check PFEC on prefetch pte path fail\n", __FUNCTION__); goto err; } return 1; err: return 0; } /* * If the write-fault access is from supervisor and CR0.WP is not set on the * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte * and clears U bit. This is the chance that kvm can change pte access from * readonly to writable. * * Unfortunately, the pte access is the access of 'direct' shadow page table, * means direct sp.role.access = pte_access, then we will create a writable * spte entry on the readonly shadow page table. It will cause Dirty bit is * not tracked when two guest ptes point to the same large page. Note, it * does not have other impact except Dirty bit since cr0.wp is encoded into * sp.role. * * Note: to trigger this bug, hugepage should be disabled on host. */ static int check_large_pte_dirty_for_nowp(ac_pt_env_t *pt_env) { ac_test_t at1, at2; ac_test_init(&at1, 0xffff923403000000ul, pt_env); __ac_test_init(&at2, 0xffffe66606000000ul, pt_env, &at1); at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK; ac_test_setup_ptes(&at2); if (!ac_test_do_access(&at2)) { printf("%s: read on the first mapping fail.\n", __FUNCTION__); goto err; } at1.flags = at2.flags | AC_ACCESS_WRITE_MASK; ac_test_setup_ptes(&at1); if (!ac_test_do_access(&at1)) { printf("%s: write on the second mapping fail.\n", __FUNCTION__); goto err; } at2.flags |= AC_ACCESS_WRITE_MASK; ac_set_expected_status(&at2); if (!ac_test_do_access(&at2)) { printf("%s: write on the first mapping fail.\n", __FUNCTION__); goto err; } return 1; err: return 0; } static int check_smep_andnot_wp(ac_pt_env_t *pt_env) { ac_test_t at1; int err_prepare_andnot_wp, err_smep_andnot_wp; if (!this_cpu_has(X86_FEATURE_SMEP)) { return 1; } ac_test_init(&at1, 0xffff923406001000ul, pt_env); at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK | AC_PDE_USER_MASK | AC_PTE_USER_MASK | AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK | AC_CPU_CR4_SMEP_MASK | AC_CPU_CR0_WP_MASK | AC_ACCESS_WRITE_MASK; ac_test_setup_ptes(&at1); /* * Here we write the ro user page when * cr0.wp=0, then we execute it and SMEP * fault should happen. */ err_prepare_andnot_wp = ac_test_do_access(&at1); if (!err_prepare_andnot_wp) { printf("%s: SMEP prepare fail\n", __FUNCTION__); goto clean_up; } at1.flags &= ~AC_ACCESS_WRITE_MASK; at1.flags |= AC_ACCESS_FETCH_MASK; ac_set_expected_status(&at1); err_smep_andnot_wp = ac_test_do_access(&at1); clean_up: set_cr4_smep(&at1, 0); if (!err_prepare_andnot_wp) goto err; if (!err_smep_andnot_wp) { printf("%s: check SMEP without wp fail\n", __FUNCTION__); goto err; } return 1; err: return 0; } #define TOGGLE_CR0_WP_TEST_BASE_FLAGS \ (AC_PDE_PRESENT_MASK | AC_PDE_ACCESSED_MASK | \ AC_PTE_PRESENT_MASK | AC_PTE_ACCESSED_MASK | \ AC_ACCESS_WRITE_MASK) static int do_cr0_wp_access(ac_test_t *at, int flags) { const bool cr0_wp = !!(flags & AC_CPU_CR0_WP_MASK); at->flags = TOGGLE_CR0_WP_TEST_BASE_FLAGS | flags; __ac_set_expected_status(at, false); /* * Under VMX the guest might own the CR0.WP bit, requiring KVM to * manually keep track of it where needed, e.g. in the guest page * table walker. * * Load CR0.WP with the inverse value of what will be used during * the access test and toggle EFER.NX to coerce KVM into rebuilding * the current MMU context based on the soon-to-be-stale CR0.WP. */ set_cr0_wp(!cr0_wp); set_efer_nx(1); set_efer_nx(0); if (!ac_test_do_access(at)) { printf("%s: %ssupervisor write with CR0.WP=%d did not %s\n", __FUNCTION__, (flags & AC_FEP_MASK) ? "emulated " : "", cr0_wp, cr0_wp ? "FAULT" : "SUCCEED"); return 1; } return 0; } static int check_toggle_cr0_wp(ac_pt_env_t *pt_env) { ac_test_t at; int err = 0; ac_test_init(&at, 0xffff923042007000ul, pt_env); at.flags = TOGGLE_CR0_WP_TEST_BASE_FLAGS; ac_test_setup_ptes(&at); err += do_cr0_wp_access(&at, 0); err += do_cr0_wp_access(&at, AC_CPU_CR0_WP_MASK); if (!(invalid_mask & AC_FEP_MASK)) { err += do_cr0_wp_access(&at, AC_FEP_MASK); err += do_cr0_wp_access(&at, AC_FEP_MASK | AC_CPU_CR0_WP_MASK); } return err == 0; } static int check_effective_sp_permissions(ac_pt_env_t *pt_env) { unsigned long ptr1 = 0xffff923480000000; unsigned long ptr2 = ptr1 + SZ_2M; unsigned long ptr3 = ptr1 + SZ_1G; unsigned long ptr4 = ptr3 + SZ_2M; ac_test_t at1, at2, at3, at4; int err_read_at1, err_write_at2; int err_read_at3, err_write_at4; /* * pgd[] pud[] pmd[] virtual address pointers * /->pmd(u--)->pte1(uw-)->page1 <- ptr1 (u--) * /->pud1(uw-)--->pmd(uw-)->pte2(uw-)->page2 <- ptr2 (uw-) * pgd-| * \->pud2(u--)--->pmd(u--)->pte1(uw-)->page1 <- ptr3 (u--) * \->pmd(uw-)->pte2(uw-)->page2 <- ptr4 (u--) * pud1 and pud2 point to the same pmd page. */ ac_test_init(&at1, ptr1, pt_env); at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK | AC_PDE_USER_MASK | AC_PTE_USER_MASK | AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK | AC_PTE_WRITABLE_MASK | AC_ACCESS_USER_MASK; ac_test_setup_ptes(&at1); __ac_test_init(&at2, ptr2, pt_env, &at1); at2.flags = at1.flags | AC_PDE_WRITABLE_MASK | AC_PTE_DIRTY_MASK | AC_ACCESS_WRITE_MASK; ac_test_setup_ptes(&at2); __ac_test_init(&at3, ptr3, pt_env, &at1); /* Override the PMD (1-based index) to point at ptr1's PMD. */ at3.page_tables[3] = at1.page_tables[3]; at3.flags = AC_PDPTE_NO_WRITABLE_MASK | at1.flags; ac_test_setup_ptes(&at3); /* Alias ptr2, only the PMD will differ; manually override the PMD. */ __ac_test_init(&at4, ptr4, pt_env, &at2); at4.page_tables[3] = at1.page_tables[3]; at4.flags = AC_PDPTE_NO_WRITABLE_MASK | at2.flags; ac_test_setup_ptes(&at4); err_read_at1 = ac_test_do_access(&at1); if (!err_read_at1) { printf("%s: read access at1 fail\n", __FUNCTION__); return 0; } err_write_at2 = ac_test_do_access(&at2); if (!err_write_at2) { printf("%s: write access at2 fail\n", __FUNCTION__); return 0; } err_read_at3 = ac_test_do_access(&at3); if (!err_read_at3) { printf("%s: read access at3 fail\n", __FUNCTION__); return 0; } err_write_at4 = ac_test_do_access(&at4); if (!err_write_at4) { printf("%s: write access at4 should fail\n", __FUNCTION__); return 0; } return 1; } static int ac_test_exec(ac_test_t *at, ac_pt_env_t *pt_env) { int r; if (verbose) { ac_test_show(at); } ac_test_setup_ptes(at); r = ac_test_do_access(at); return r; } typedef int (*ac_test_fn)(ac_pt_env_t *pt_env); const ac_test_fn ac_test_cases[] = { corrupt_hugepage_trigger, check_pfec_on_prefetch_pte, check_large_pte_dirty_for_nowp, check_smep_andnot_wp, check_toggle_cr0_wp, check_effective_sp_permissions, }; void ac_test_run(int pt_levels, bool force_emulation) { ac_test_t at; ac_pt_env_t pt_env; int i, tests, successes; if (force_emulation && !is_fep_available()) { report_skip("Forced emulation prefix (FEP) not available\n"); return; } printf("run\n"); tests = successes = 0; shadow_cr0 = read_cr0(); shadow_cr4 = read_cr4(); shadow_cr3 = read_cr3(); shadow_efer = rdmsr(MSR_EFER); if (cpuid_maxphyaddr() >= 52) { invalid_mask |= AC_PDE_BIT51_MASK; invalid_mask |= AC_PTE_BIT51_MASK; } if (cpuid_maxphyaddr() >= 37) { invalid_mask |= AC_PDE_BIT36_MASK; invalid_mask |= AC_PTE_BIT36_MASK; } if (!force_emulation) invalid_mask |= AC_FEP_MASK; ac_env_int(&pt_env, pt_levels); ac_test_init(&at, 0xffff923400000000ul, &pt_env); if (this_cpu_has(X86_FEATURE_PKU)) { set_cr4_pke(1); set_cr4_pke(0); /* Now PKRU = 0xFFFFFFFF. */ } else { tests++; if (write_cr4_safe(shadow_cr4 | X86_CR4_PKE) == GP_VECTOR) { successes++; invalid_mask |= AC_PKU_AD_MASK; invalid_mask |= AC_PKU_WD_MASK; invalid_mask |= AC_PKU_PKEY_MASK; invalid_mask |= AC_CPU_CR4_PKE_MASK; printf("CR4.PKE not available, disabling PKE tests\n"); } else { printf("Set PKE in CR4 - expect #GP: FAIL!\n"); set_cr4_pke(0); } } if (!this_cpu_has(X86_FEATURE_SMEP)) { tests++; if (set_cr4_smep(&at, 1) == GP_VECTOR) { successes++; invalid_mask |= AC_CPU_CR4_SMEP_MASK; printf("CR4.SMEP not available, disabling SMEP tests\n"); } else { printf("Set SMEP in CR4 - expect #GP: FAIL!\n"); set_cr4_smep(&at, 0); } } /* Toggling LA57 in 64-bit mode (guaranteed for this test) is illegal. */ if (this_cpu_has(X86_FEATURE_LA57)) { tests++; if (write_cr4_safe(shadow_cr4 ^ X86_CR4_LA57) == GP_VECTOR) successes++; /* Force a VM-Exit on KVM, which doesn't intercept LA57 itself. */ tests++; if (write_cr4_safe(shadow_cr4 ^ (X86_CR4_LA57 | X86_CR4_PSE)) == GP_VECTOR) successes++; } do { ++tests; successes += ac_test_exec(&at, &pt_env); } while (ac_test_bump(&at)); for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) { ac_env_int(&pt_env, pt_levels); ++tests; successes += ac_test_cases[i](&pt_env); } printf("\n%d tests, %d failures\n", tests, tests - successes); report(successes == tests, "%d-level paging tests%s", pt_levels, force_emulation ? " (with forced emulation)" : ""); }