/* SPDX-License-Identifier: GPL-2.0-only */ /* * Library for managing various aspects of guests * * Copyright (c) 2021 IBM Corp * * Authors: * Janosch Frank */ #include #include #include #include #include #include #include #include #include void sie_expect_validity(struct vm *vm) { vm->validity_expected = true; } uint16_t sie_get_validity(struct vm *vm) { /* * 0xffff will never be returned by SIE, so we can indicate a * missing validity via this value. */ if (vm->sblk->icptcode != ICPT_VALIDITY) return 0xffff; return vm->sblk->ipb >> 16; } void sie_check_validity(struct vm *vm, uint16_t vir_exp) { uint16_t vir = sie_get_validity(vm); report(vir_exp == vir, "VALIDITY: %x", vir); } void sie_handle_validity(struct vm *vm) { if (vm->sblk->icptcode != ICPT_VALIDITY) return; if (!vm->validity_expected) report_abort("VALIDITY: %x", sie_get_validity(vm)); vm->validity_expected = false; } void sie(struct vm *vm) { uint64_t old_cr13; /* When a pgm int code is set, we'll never enter SIE below. */ assert(!read_pgm_int_code()); if (sie_is_pv(vm)) memcpy(vm->sblk->pv_grregs, vm->save_area.guest.grs, sizeof(vm->save_area.guest.grs)); /* Reset icptcode so we don't trip over it below */ vm->sblk->icptcode = 0; /* * Set up home address space to match primary space. Instead of running * in home space all the time, we switch every time in sie() because: * - tests that depend on running in primary space mode don't need to be * touched * - it avoids regressions in tests * - switching every time makes it easier to extend this in the future, * for example to allow tests to run in whatever space they want */ old_cr13 = stctg(13); lctlg(13, stctg(1)); /* switch to home space so guest tables can be different from host */ psw_mask_set_bits(PSW_MASK_HOME); /* also handle all interruptions in home space while in SIE */ irq_set_dat_mode(true, AS_HOME); /* leave SIE when we have an intercept or an interrupt so the test can react to it */ while (vm->sblk->icptcode == 0 && !read_pgm_int_code()) { sie64a(vm->sblk, &vm->save_area); sie_handle_validity(vm); } vm->save_area.guest.grs[14] = vm->sblk->gg14; vm->save_area.guest.grs[15] = vm->sblk->gg15; irq_set_dat_mode(true, AS_PRIM); psw_mask_clear_bits(PSW_MASK_HOME); /* restore the old CR 13 */ lctlg(13, old_cr13); if (sie_is_pv(vm)) memcpy(vm->save_area.guest.grs, vm->sblk->pv_grregs, sizeof(vm->save_area.guest.grs)); } void sie_guest_sca_create(struct vm *vm) { vm->sca = (struct esca_block *)alloc_page(); /* Let's start out with one page of ESCA for now */ vm->sblk->scaoh = ((uint64_t)vm->sca >> 32); vm->sblk->scaol = (uint64_t)vm->sca & ~0x3fU; vm->sblk->ecb2 |= ECB2_ESCA; /* Enable SIGP sense running interpretation */ vm->sblk->ecb |= ECB_SRSI; /* We assume that cpu 0 is always part of the vm */ vm->sca->mcn[0] = BIT(63); vm->sca->cpu[0].sda = (uint64_t)vm->sblk; } /* Initializes the struct vm members like the SIE control block. */ void sie_guest_create(struct vm *vm, uint64_t guest_mem, uint64_t guest_mem_len) { vm->sblk = alloc_page(); memset(vm->sblk, 0, PAGE_SIZE); vm->sblk->cpuflags = CPUSTAT_ZARCH | CPUSTAT_RUNNING; vm->sblk->ihcpu = 0xffff; vm->sblk->prefix = 0; /* Guest memory chunks are always 1MB */ assert(!(guest_mem_len & ~HPAGE_MASK)); vm->guest_mem = (uint8_t *)guest_mem; /* For non-PV guests we re-use the host's ASCE for ease of use */ vm->save_area.guest.asce = stctg(1); /* Currently MSO/MSL is the easiest option */ vm->sblk->mso = (uint64_t)guest_mem; vm->sblk->msl = (uint64_t)guest_mem + ((guest_mem_len - 1) & HPAGE_MASK); /* CRYCB needs to be in the first 2GB */ vm->crycb = alloc_pages_flags(0, AREA_DMA31); vm->sblk->crycbd = (uint32_t)(uintptr_t)vm->crycb; } /** * sie_guest_alloc() - Allocate memory for a guest and map it in virtual address * space such that it is properly aligned. * @guest_size: the desired size of the guest in bytes. */ uint8_t *sie_guest_alloc(uint64_t guest_size) { static unsigned long guest_counter = 1; u8 *guest_phys, *guest_virt; unsigned long i; pgd_t *root; setup_vm(); root = (pgd_t *)(stctg(1) & PAGE_MASK); /* * Start of guest memory in host virtual space needs to be aligned to * 2GB for some environments. It also can't be at 2GB since the memory * allocator stores its page_states metadata there. * Thus we use the next multiple of 4GB after the end of physical * mapping. This also leaves space after end of physical memory so the * page immediately after physical memory is guaranteed not to be * present. */ guest_virt = (uint8_t *)ALIGN(get_ram_size() + guest_counter * 4UL * SZ_1G, SZ_2G); guest_counter++; guest_phys = alloc_pages(get_order(guest_size) - 12); /* * Establish a new mapping of the guest memory so it can be 2GB aligned * without actually requiring 2GB physical memory. */ for (i = 0; i < guest_size; i += PAGE_SIZE) { install_page(root, __pa(guest_phys + i), guest_virt + i); } memset(guest_virt, 0, guest_size); return guest_virt; } /* Frees the memory that was gathered on initialization */ void sie_guest_destroy(struct vm *vm) { free_page(vm->crycb); free_page(vm->sblk); if (vm->sblk->ecb2 & ECB2_ESCA) free_page(vm->sca); }