/* * Initialize machine setup information and I/O. * * After running setup() unit tests may query how many cpus they have * (nr_cpus), how much memory they have (PHYS_END - PHYS_OFFSET), may * use dynamic memory allocation (malloc, etc.), printf, and exit. * Finally, argc and argv are also ready to be passed to main(). * * Copyright (C) 2014, Red Hat Inc, Andrew Jones * * This work is licensed under the terms of the GNU LGPL, version 2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "io.h" #define MAX_DT_MEM_REGIONS 16 #define NR_EXTRA_MEM_REGIONS 16 #define NR_INITIAL_MEM_REGIONS (MAX_DT_MEM_REGIONS + NR_EXTRA_MEM_REGIONS) extern unsigned long etext; struct timer_state __timer_state; char *initrd; u32 initrd_size; u64 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (u64)~0 }; int nr_cpus; static struct mem_region __initial_mem_regions[NR_INITIAL_MEM_REGIONS + 1]; struct mem_region *mem_regions = __initial_mem_regions; phys_addr_t __phys_offset, __phys_end; int mpidr_to_cpu(uint64_t mpidr) { int i; for (i = 0; i < nr_cpus; ++i) if (cpus[i] == (mpidr & MPIDR_HWID_BITMASK)) return i; return -1; } static void cpu_set(int fdtnode __unused, u64 regval, void *info __unused) { int cpu = nr_cpus++; assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); cpus[cpu] = regval; set_cpu_present(cpu, true); } static void cpu_init(void) { int ret; nr_cpus = 0; ret = dt_for_each_cpu_node(cpu_set, NULL); assert(ret == 0); set_cpu_online(0, true); } static void mem_region_add(struct mem_region *r) { struct mem_region *r_next = mem_regions; int i = 0; for (; r_next->end; ++r_next, ++i) ; assert(i < NR_INITIAL_MEM_REGIONS); *r_next = *r; } static void mem_regions_add_dt_regions(void) { struct dt_pbus_reg regs[MAX_DT_MEM_REGIONS]; int nr_regs, i; nr_regs = dt_get_memory_params(regs, MAX_DT_MEM_REGIONS); assert(nr_regs > 0); for (i = 0; i < nr_regs; ++i) { mem_region_add(&(struct mem_region){ .start = regs[i].addr, .end = regs[i].addr + regs[i].size, }); } } struct mem_region *mem_region_find(phys_addr_t paddr) { struct mem_region *r; for (r = mem_regions; r->end; ++r) if (paddr >= r->start && paddr < r->end) return r; return NULL; } unsigned int mem_region_get_flags(phys_addr_t paddr) { struct mem_region *r = mem_region_find(paddr); return r ? r->flags : MR_F_UNKNOWN; } static void mem_regions_add_assumed(void) { phys_addr_t code_end = (phys_addr_t)(unsigned long)&etext; struct mem_region *r; r = mem_region_find(code_end - 1); assert(r); /* Split the region with the code into two regions; code and data */ mem_region_add(&(struct mem_region){ .start = code_end, .end = r->end, }); *r = (struct mem_region){ .start = r->start, .end = code_end, .flags = MR_F_CODE, }; /* * mach-virt I/O regions: * - The first 1G (arm/arm64) * - 512M at 256G (arm64, arm uses highmem=off) * - 512G at 512G (arm64, arm uses highmem=off) */ mem_region_add(&(struct mem_region){ 0, (1ul << 30), MR_F_IO }); #ifdef __aarch64__ mem_region_add(&(struct mem_region){ (1ul << 38), (1ul << 38) | (1ul << 29), MR_F_IO }); mem_region_add(&(struct mem_region){ (1ul << 39), (1ul << 40), MR_F_IO }); #endif } static void mem_init(phys_addr_t freemem_start) { phys_addr_t base, top; struct mem_region *freemem, *r, mem = { .start = (phys_addr_t)-1, }; freemem = mem_region_find(freemem_start); assert(freemem && !(freemem->flags & (MR_F_IO | MR_F_CODE))); for (r = mem_regions; r->end; ++r) { if (!(r->flags & MR_F_IO)) { if (r->start < mem.start) mem.start = r->start; if (r->end > mem.end) mem.end = r->end; } } assert(mem.end && !(mem.start & ~PHYS_MASK)); mem.end &= PHYS_MASK; /* Check for holes */ r = mem_region_find(mem.start); while (r && r->end != mem.end) r = mem_region_find(r->end); assert(r); /* Ensure our selected freemem range is somewhere in our full range */ assert(freemem_start >= mem.start && freemem->end <= mem.end); __phys_offset = mem.start; /* PHYS_OFFSET */ __phys_end = mem.end; /* PHYS_END */ phys_alloc_init(freemem_start, freemem->end - freemem_start); phys_alloc_set_minimum_alignment(SMP_CACHE_BYTES); phys_alloc_get_unused(&base, &top); base = PAGE_ALIGN(base); top = top & PAGE_MASK; assert(sizeof(long) == 8 || !(base >> 32)); if (sizeof(long) != 8 && (top >> 32) != 0) top = ((uint64_t)1 << 32); page_alloc_init_area(0, base >> PAGE_SHIFT, top >> PAGE_SHIFT); page_alloc_ops_enable(); } static void timer_save_state(void) { const struct fdt_property *prop; const void *fdt = dt_fdt(); int node, len; u32 *data; node = fdt_node_offset_by_compatible(fdt, -1, "arm,armv8-timer"); assert(node >= 0 || node == -FDT_ERR_NOTFOUND); if (node == -FDT_ERR_NOTFOUND) { __timer_state.ptimer.irq = -1; __timer_state.vtimer.irq = -1; return; } /* * From Linux devicetree timer binding documentation * * interrupts : * secure timer irq * non-secure timer irq (ptimer) * virtual timer irq (vtimer) * hypervisor timer irq */ prop = fdt_get_property(fdt, node, "interrupts", &len); assert(prop && len == (4 * 3 * sizeof(u32))); data = (u32 *)prop->data; assert(fdt32_to_cpu(data[3]) == 1 /* PPI */); __timer_state.ptimer.irq = fdt32_to_cpu(data[4]); __timer_state.ptimer.irq_flags = fdt32_to_cpu(data[5]); assert(fdt32_to_cpu(data[6]) == 1 /* PPI */); __timer_state.vtimer.irq = fdt32_to_cpu(data[7]); __timer_state.vtimer.irq_flags = fdt32_to_cpu(data[8]); } void setup(const void *fdt, phys_addr_t freemem_start) { void *freemem; const char *bootargs, *tmp; u32 fdt_size; int ret; assert(sizeof(long) == 8 || freemem_start < (3ul << 30)); freemem = (void *)(unsigned long)freemem_start; /* Move the FDT to the base of free memory */ fdt_size = fdt_totalsize(fdt); ret = fdt_move(fdt, freemem, fdt_size); assert(ret == 0); ret = dt_init(freemem); assert(ret == 0); freemem += fdt_size; /* Move the initrd to the top of the FDT */ ret = dt_get_initrd(&tmp, &initrd_size); assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); if (ret == 0) { initrd = freemem; memmove(initrd, tmp, initrd_size); freemem += initrd_size; } mem_regions_add_dt_regions(); mem_regions_add_assumed(); mem_init(PAGE_ALIGN((unsigned long)freemem)); psci_set_conduit(); cpu_init(); /* cpu_init must be called before thread_info_init */ thread_info_init(current_thread_info(), 0); /* mem_init must be called before io_init */ io_init(); timer_save_state(); ret = dt_get_bootargs(&bootargs); assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); setup_args_progname(bootargs); if (initrd) { /* environ is currently the only file in the initrd */ char *env = malloc(initrd_size); memcpy(env, initrd, initrd_size); setup_env(env, initrd_size); } if (!(auxinfo.flags & AUXINFO_MMU_OFF)) setup_vm(); }