/* * Initialize machine setup information and I/O. * * After running setup() unit tests may query how many cpus they have * (nr_cpus), how much memory they have (PHYS_END - PHYS_OFFSET), may * use dynamic memory allocation (malloc, etc.), printf, and exit. * Finally, argc and argv are also ready to be passed to main(). * * Copyright (C) 2014, Red Hat Inc, Andrew Jones * * This work is licensed under the terms of the GNU LGPL, version 2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "io.h" #define MAX_DT_MEM_REGIONS 16 #define NR_EXTRA_MEM_REGIONS 64 #define NR_MEM_REGIONS (MAX_DT_MEM_REGIONS + NR_EXTRA_MEM_REGIONS) extern unsigned long _text, _etext, _data, _edata; char *initrd; u32 initrd_size; u64 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (u64)~0 }; int nr_cpus; static struct mem_region arm_mem_regions[NR_MEM_REGIONS + 1]; phys_addr_t __phys_offset = (phys_addr_t)-1, __phys_end = 0; extern void exceptions_init(void); extern void asm_mmu_disable(void); int mpidr_to_cpu(uint64_t mpidr) { int i; for (i = 0; i < nr_cpus; ++i) if (cpus[i] == (mpidr & MPIDR_HWID_BITMASK)) return i; return -1; } static void cpu_set_fdt(int fdtnode __unused, u64 regval, void *info __unused) { int cpu = nr_cpus++; assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); cpus[cpu] = regval; set_cpu_present(cpu, true); } #ifdef CONFIG_EFI #include static int cpu_set_acpi(struct acpi_subtable_header *header) { int cpu = nr_cpus++; struct acpi_madt_generic_interrupt *gicc = (void *)header; assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); cpus[cpu] = gicc->arm_mpidr; set_cpu_present(cpu, true); return 0; } static void cpu_init_acpi(void) { acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, cpu_set_acpi); } #else static void cpu_init_acpi(void) { assert_msg(false, "ACPI not available"); } #endif static void cpu_init(void) { int ret; nr_cpus = 0; if (dt_available()) { ret = dt_for_each_cpu_node(cpu_set_fdt, NULL); assert(ret == 0); } else { cpu_init_acpi(); } set_cpu_online(0, true); } static void arm_memregions_add_assumed(void) { struct mem_region *code, *data; /* Split the region with the code into two regions; code and data */ memregions_split((unsigned long)&_etext, &code, &data); assert(code); code->flags |= MR_F_CODE; /* * mach-virt I/O regions: * - The first 1G (arm/arm64) * - 512M at 256G (arm64, arm uses highmem=off) * - 512G at 512G (arm64, arm uses highmem=off) */ memregions_add(&(struct mem_region){ 0, (1ul << 30), MR_F_IO }); #ifdef __aarch64__ memregions_add(&(struct mem_region){ (1ul << 38), (1ul << 38) | (1ul << 29), MR_F_IO }); memregions_add(&(struct mem_region){ (1ul << 39), (1ul << 40), MR_F_IO }); #endif } static void mem_init(phys_addr_t freemem_start) { phys_addr_t base, top; struct mem_region *freemem, *r, mem = { .start = (phys_addr_t)-1, }; freemem = memregions_find(freemem_start); assert(freemem && !(freemem->flags & (MR_F_IO | MR_F_CODE))); for (r = mem_regions; r->end; ++r) { if (!(r->flags & MR_F_IO)) { if (r->start < mem.start) mem.start = r->start; if (r->end > mem.end) mem.end = r->end; } } assert(mem.end && !(mem.start & ~PHYS_MASK)); mem.end &= PHYS_MASK; /* Check for holes */ r = memregions_find(mem.start); while (r && r->end != mem.end) r = memregions_find(r->end); assert(r); /* Ensure our selected freemem range is somewhere in our full range */ assert(freemem_start >= mem.start && freemem->end <= mem.end); __phys_offset = mem.start; /* PHYS_OFFSET */ __phys_end = mem.end; /* PHYS_END */ phys_alloc_init(freemem_start, freemem->end - freemem_start); phys_alloc_set_minimum_alignment(SMP_CACHE_BYTES); phys_alloc_get_unused(&base, &top); base = PAGE_ALIGN(base); top = top & PAGE_MASK; assert(sizeof(long) == 8 || !(base >> 32)); if (sizeof(long) != 8 && (top >> 32) != 0) top = ((uint64_t)1 << 32); page_alloc_init_area(0, base >> PAGE_SHIFT, top >> PAGE_SHIFT); page_alloc_ops_enable(); } static void freemem_push_fdt(void **freemem, const void *fdt) { u32 fdt_size; int ret; fdt_size = fdt_totalsize(fdt); ret = fdt_move(fdt, *freemem, fdt_size); assert(ret == 0); ret = dt_init(*freemem); assert(ret == 0); *freemem += fdt_size; } static void freemem_push_dt_initrd(void **freemem) { const char *tmp; int ret; ret = dt_get_initrd(&tmp, &initrd_size); assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); if (ret == 0) { initrd = *freemem; memmove(initrd, tmp, initrd_size); *freemem += initrd_size; } } static void initrd_setup(void) { char *env; if (!initrd) return; /* environ is currently the only file in the initrd */ env = malloc(initrd_size); memcpy(env, initrd, initrd_size); setup_env(env, initrd_size); } void setup(const void *fdt, phys_addr_t freemem_start) { void *freemem; const char *bootargs; int ret; assert(sizeof(long) == 8 || freemem_start < (3ul << 30)); freemem = (void *)(unsigned long)freemem_start; freemem_push_fdt(&freemem, fdt); freemem_push_dt_initrd(&freemem); memregions_init(arm_mem_regions, NR_MEM_REGIONS); memregions_add_dt_regions(MAX_DT_MEM_REGIONS); arm_memregions_add_assumed(); mem_init(PAGE_ALIGN((unsigned long)freemem)); psci_set_conduit(); cpu_init(); /* cpu_init must be called before thread_info_init */ thread_info_init(current_thread_info(), 0); /* mem_init must be called before io_init */ io_init(); timer_save_state(); ret = dt_get_bootargs(&bootargs); assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); setup_args_progname(bootargs); initrd_setup(); if (!(auxinfo.flags & AUXINFO_MMU_OFF)) setup_vm(); } #ifdef CONFIG_EFI #include static efi_status_t setup_rsdp(efi_bootinfo_t *efi_bootinfo) { efi_status_t status; struct acpi_table_rsdp *rsdp; /* * RSDP resides in an EFI_ACPI_RECLAIM_MEMORY region, which is not used * by kvm-unit-tests arm64 memory allocator. So it is not necessary to * copy the data structure to another memory region to prevent * unintentional overwrite. */ status = efi_get_system_config_table(ACPI_20_TABLE_GUID, (void **)&rsdp); if (status != EFI_SUCCESS) return status; set_efi_rsdp(rsdp); return EFI_SUCCESS; } static efi_status_t efi_mem_init(efi_bootinfo_t *efi_bootinfo) { int i; unsigned long free_mem_pages = 0; unsigned long free_mem_start = 0; struct efi_boot_memmap *map = &(efi_bootinfo->mem_map); efi_memory_desc_t *buffer = *map->map; efi_memory_desc_t *d = NULL; phys_addr_t base, top; struct mem_region r; uintptr_t text = (uintptr_t)&_text, etext = ALIGN((uintptr_t)&_etext, 4096); uintptr_t data = (uintptr_t)&_data, edata = ALIGN((uintptr_t)&_edata, 4096); const void *fdt = efi_bootinfo->fdt; /* * Record the largest free EFI_CONVENTIONAL_MEMORY region * which will be used to set up the memory allocator, so that * the memory allocator can work in the largest free * continuous memory region. */ for (i = 0; i < *(map->map_size); i += *(map->desc_size)) { d = (efi_memory_desc_t *)(&((u8 *)buffer)[i]); r.start = d->phys_addr; r.end = d->phys_addr + d->num_pages * EFI_PAGE_SIZE; r.flags = 0; switch (d->type) { case EFI_RESERVED_TYPE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_UNUSABLE_MEMORY: case EFI_ACPI_RECLAIM_MEMORY: case EFI_ACPI_MEMORY_NVS: case EFI_PAL_CODE: r.flags = MR_F_RESERVED; break; case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: r.flags = MR_F_IO; break; case EFI_LOADER_CODE: if (r.start <= text && r.end > text) { /* This is the unit test region. Flag the code separately. */ phys_addr_t tmp = r.end; assert(etext <= data); assert(edata <= r.end); r.flags = MR_F_CODE; r.end = data; memregions_add(&r); r.start = data; r.end = tmp; r.flags = 0; } else { r.flags = MR_F_RESERVED; } break; case EFI_CONVENTIONAL_MEMORY: if (free_mem_pages < d->num_pages) { free_mem_pages = d->num_pages; free_mem_start = d->phys_addr; } break; } if (!(r.flags & MR_F_IO)) { if (r.start < __phys_offset) __phys_offset = r.start; if (r.end > __phys_end) __phys_end = r.end; } memregions_add(&r); } if (fdt) { unsigned long old_start = free_mem_start; void *freemem = (void *)free_mem_start; freemem_push_fdt(&freemem, fdt); free_mem_start = ALIGN((unsigned long)freemem, EFI_PAGE_SIZE); free_mem_pages = (free_mem_start - old_start) >> EFI_PAGE_SHIFT; } __phys_end &= PHYS_MASK; asm_mmu_disable(); if (free_mem_pages == 0) return EFI_OUT_OF_RESOURCES; assert(sizeof(long) == 8 || free_mem_start < (3ul << 30)); phys_alloc_init(free_mem_start, free_mem_pages << EFI_PAGE_SHIFT); phys_alloc_set_minimum_alignment(SMP_CACHE_BYTES); phys_alloc_get_unused(&base, &top); base = PAGE_ALIGN(base); top = top & PAGE_MASK; assert(sizeof(long) == 8 || !(base >> 32)); if (sizeof(long) != 8 && (top >> 32) != 0) top = ((uint64_t)1 << 32); page_alloc_init_area(0, base >> PAGE_SHIFT, top >> PAGE_SHIFT); page_alloc_ops_enable(); return EFI_SUCCESS; } efi_status_t setup_efi(efi_bootinfo_t *efi_bootinfo) { efi_status_t status; struct thread_info *ti = current_thread_info(); memset(ti, 0, sizeof(*ti)); exceptions_init(); memregions_init(arm_mem_regions, NR_MEM_REGIONS); status = efi_mem_init(efi_bootinfo); if (status != EFI_SUCCESS) { printf("Failed to initialize memory: "); switch (status) { case EFI_OUT_OF_RESOURCES: printf("No free memory region\n"); break; default: printf("Unknown error\n"); break; } return status; } if (!dt_available()) { status = setup_rsdp(efi_bootinfo); if (status != EFI_SUCCESS) { printf("Cannot find RSDP in EFI system table\n"); return status; } } psci_set_conduit(); cpu_init(); /* cpu_init must be called before thread_info_init */ thread_info_init(current_thread_info(), 0); /* mem_init must be called before io_init */ io_init(); timer_save_state(); initrd_setup(); if (!(auxinfo.flags & AUXINFO_MMU_OFF)) setup_vm(); return EFI_SUCCESS; } #endif