// Copyright © 2020, Oracle and/or its affiliates. // // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. // SPDX-License-Identifier: Apache-2.0 // // Portions Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE-BSD-3-Clause file. // For GDT details see arch/x86/include/asm/segment.h use crate::arch::x86::SegmentRegister; /// Constructor for a conventional segment GDT (or LDT) entry. Derived from the kernel's segment.h. pub fn gdt_entry(flags: u16, base: u32, limit: u32) -> u64 { (((base as u64) & 0xff000000u64) << (56 - 24)) | (((flags as u64) & 0x0000f0ffu64) << 40) | (((limit as u64) & 0x000f0000u64) << (48 - 16)) | (((base as u64) & 0x00ffffffu64) << 16) | ((limit as u64) & 0x0000ffffu64) } fn get_base(entry: u64) -> u64 { (((entry) & 0xFF00000000000000) >> 32) | (((entry) & 0x000000FF00000000) >> 16) | (((entry) & 0x00000000FFFF0000) >> 16) } // Extract the segment limit from the GDT segment descriptor. // // In a segment descriptor, the limit field is 20 bits, so it can directly describe // a range from 0 to 0xFFFFF (1MByte). When G flag is set (4-KByte page granularity) it // scales the value in the limit field by a factor of 2^12 (4Kbytes), making the effective // limit range from 0xFFF (4 KBytes) to 0xFFFF_FFFF (4 GBytes). // // However, the limit field in the VMCS definition is a 32 bit field, and the limit value is not // automatically scaled using the G flag. This means that for a desired range of 4GB for a // given segment, its limit must be specified as 0xFFFF_FFFF. Therefore the method of obtaining // the limit from the GDT entry is not sufficient, since it only provides 20 bits when 32 bits // are necessary. Fortunately, we can check if the G flag is set when extracting the limit since // the full GDT entry is passed as an argument, and perform the scaling of the limit value to // return the full 32 bit value. // // The scaling mentioned above is required when using PVH boot, since the guest boots in protected // (32-bit) mode and must be able to access the entire 32-bit address space. It does not cause issues // for the case of direct boot to 64-bit (long) mode, since in 64-bit mode the processor does not // perform runtime limit checking on code or data segments. fn get_limit(entry: u64) -> u32 { let limit: u32 = ((((entry) & 0x000F000000000000) >> 32) | ((entry) & 0x000000000000FFFF)) as u32; // Perform manual limit scaling if G flag is set match get_g(entry) { 0 => limit, _ => (limit << 12) | 0xFFF, // G flag is either 0 or 1 } } fn get_g(entry: u64) -> u8 { ((entry & 0x0080000000000000) >> 55) as u8 } fn get_db(entry: u64) -> u8 { ((entry & 0x0040000000000000) >> 54) as u8 } fn get_l(entry: u64) -> u8 { ((entry & 0x0020000000000000) >> 53) as u8 } fn get_avl(entry: u64) -> u8 { ((entry & 0x0010000000000000) >> 52) as u8 } fn get_p(entry: u64) -> u8 { ((entry & 0x0000800000000000) >> 47) as u8 } fn get_dpl(entry: u64) -> u8 { ((entry & 0x0000600000000000) >> 45) as u8 } fn get_s(entry: u64) -> u8 { ((entry & 0x0000100000000000) >> 44) as u8 } fn get_type(entry: u64) -> u8 { ((entry & 0x00000F0000000000) >> 40) as u8 } /// Automatically build the struct for SET_SREGS from the kernel bit fields. /// /// # Arguments /// /// * `entry` - The gdt entry. /// * `table_index` - Index of the entry in the gdt table. pub fn segment_from_gdt(entry: u64, table_index: u8) -> SegmentRegister { SegmentRegister { base: get_base(entry), limit: get_limit(entry), selector: (table_index * 8) as u16, type_: get_type(entry), present: get_p(entry), dpl: get_dpl(entry), db: get_db(entry), s: get_s(entry), l: get_l(entry), g: get_g(entry), avl: get_avl(entry), unusable: match get_p(entry) { 0 => 1, _ => 0, }, } } #[cfg(test)] mod tests { use super::*; #[test] fn field_parse() { let gdt = gdt_entry(0xA09B, 0x100000, 0xfffff); let seg = segment_from_gdt(gdt, 0); // 0xA09B // 'A' assert_eq!(0x1, seg.g); assert_eq!(0x0, seg.db); assert_eq!(0x1, seg.l); assert_eq!(0x0, seg.avl); // '9' assert_eq!(0x1, seg.present); assert_eq!(0x0, seg.dpl); assert_eq!(0x1, seg.s); // 'B' assert_eq!(0xB, seg.type_); // base and limit assert_eq!(0x100000, seg.base); assert_eq!(0xffffffff, seg.limit); assert_eq!(0x0, seg.unusable); } }