Lines Matching full:the
9 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
10 * See the COPYING.LIB file in the top-level directory.
17 * An open image has one L2 table cache that is used to avoid accessing the
20 * Cluster offset lookup translates the logical offset within the block device
21 * to a cluster offset within the image file. This is done by indexing into
22 * the L1 and L2 tables which store cluster offsets. It is here where the L2
25 * If there is a cache miss, that L2 table is read from the image file and
26 * committed to the cache. Subsequent accesses to that L2 table will be served
27 * from the cache until the table is evicted from the cache.
29 * L2 tables are also committed to the cache when new L2 tables are allocated
30 * in the image file. Since the L2 table cache is write-through, the new L2
31 * table is first written out to the image file and then committed to the
36 * reference counting is needed to free the entry at the correct time. In
37 * particular, an entry evicted from the cache will only be freed once all
41 * the period during which it needs to access the L2 table. This includes
46 * is not in the cache. Since the operation to read the table from the image
48 * start reading the L2 table from the image file. The first to finish will
49 * commit its L2 table into the cache. When the second tries to commit its
50 * table will be deleted in favor of the existing cache entry.
62 * Initialize the L2 cache
71 * Free the L2 cache
84 * Allocate an uninitialized entry from the cache
86 * The returned entry has a reference count of 1 and is owned by the caller.
87 * The caller must allocate the actual table field for this entry and it must
103 * Decrease an entry's reference count and free if necessary when the reference
123 * Find an entry in the L2 cache. This may return NULL and it's up to the
124 * caller to satisfy the cache miss.
126 * For a cached entry, this function increases the reference count and returns
127 * the entry.
146 * Commit an L2 cache entry into the cache. This is meant to be used as part of
147 * the process to satisfy a cache miss. A caller would allocate an entry which
148 * is not actually in the L2 cache and then once the entry was valid and
149 * present on disk, the entry can be committed into the cache.
151 * Since the cache is write-through, it's important that this function is not
152 * called until the entry is present on disk and the L1 has been updated to
153 * point to the entry.
155 * N.B. This function steals a reference to the l2_table from the caller so the
173 * we can grow the cache temporarily and we try to shrink back down later. in qed_commit_l2_cache_entry()