Lines Matching +full:am654 +full:- +full:mailbox
1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
9 #include <linux/dma-mapping.h>
19 #include <linux/omap-mailbox.h>
33 /* R5 TI-SCI Processor Configuration Flags */
47 /* R5 TI-SCI Processor Control Flags */
50 /* R5 TI-SCI Processor Status Flags */
59 * struct k3_r5_mem - internal memory structure
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
88 * struct k3_r5_soc_data - match data to handle SoC variations
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
102 * struct k3_r5_cluster - K3 R5F Cluster structure
104 * @mode: Mode to configure the Cluster - Split or LockStep
106 * @soc_data: SoC-specific feature data for a R5FSS
116 * struct k3_r5_core - K3 R5 core structure
121 * @sram: on-chip SRAM memory regions data
123 * @num_sram: number of on-chip SRAM memory regions
125 * @tsp: TI-SCI processor control handle
126 * @ti_sci: TI-SCI handle
127 * @ti_sci_id: TI-SCI device identifier
150 * struct k3_r5_rproc - K3 remote processor state
153 * @mbox: mailbox channel handle
154 * @client: mailbox client to request the mailbox channel
172 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
173 * @client: mailbox client pointer used for requesting the mailbox channel
174 * @data: mailbox payload
176 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
177 * message is received. Usually, the mailbox payload simply contains
181 * In addition to virtqueue indices, we also have some out-of-band values
189 struct device *dev = kproc->rproc->dev.parent; in k3_r5_rproc_mbox_callback()
190 const char *name = kproc->rproc->name; in k3_r5_rproc_mbox_callback()
210 if (msg > kproc->rproc->max_notifyid) { in k3_r5_rproc_mbox_callback()
215 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) in k3_r5_rproc_mbox_callback()
223 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_kick()
224 struct device *dev = rproc->dev.parent; in k3_r5_rproc_kick()
228 /* send the index of the triggered virtqueue in the mailbox payload */ in k3_r5_rproc_kick()
229 ret = mbox_send_message(kproc->mbox, (void *)msg); in k3_r5_rproc_kick()
231 dev_err(dev, "failed to send mailbox message, status = %d\n", in k3_r5_rproc_kick()
239 ret = reset_control_assert(core->reset); in k3_r5_split_reset()
241 dev_err(core->dev, "local-reset assert failed, ret = %d\n", in k3_r5_split_reset()
246 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, in k3_r5_split_reset()
247 core->ti_sci_id); in k3_r5_split_reset()
249 dev_err(core->dev, "module-reset assert failed, ret = %d\n", in k3_r5_split_reset()
251 if (reset_control_deassert(core->reset)) in k3_r5_split_reset()
252 dev_warn(core->dev, "local-reset deassert back failed\n"); in k3_r5_split_reset()
262 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, in k3_r5_split_release()
263 core->ti_sci_id); in k3_r5_split_release()
265 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", in k3_r5_split_release()
270 ret = reset_control_deassert(core->reset); in k3_r5_split_release()
272 dev_err(core->dev, "local-reset deassert failed, ret = %d\n", in k3_r5_split_release()
274 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, in k3_r5_split_release()
275 core->ti_sci_id)) in k3_r5_split_release()
276 dev_warn(core->dev, "module-reset assert back failed\n"); in k3_r5_split_release()
288 list_for_each_entry(core, &cluster->cores, elem) { in k3_r5_lockstep_reset()
289 ret = reset_control_assert(core->reset); in k3_r5_lockstep_reset()
291 dev_err(core->dev, "local-reset assert failed, ret = %d\n", in k3_r5_lockstep_reset()
299 list_for_each_entry(core, &cluster->cores, elem) { in k3_r5_lockstep_reset()
300 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, in k3_r5_lockstep_reset()
301 core->ti_sci_id); in k3_r5_lockstep_reset()
303 dev_err(core->dev, "module-reset assert failed, ret = %d\n", in k3_r5_lockstep_reset()
312 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { in k3_r5_lockstep_reset()
313 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, in k3_r5_lockstep_reset()
314 core->ti_sci_id)) in k3_r5_lockstep_reset()
315 dev_warn(core->dev, "module-reset assert back failed\n"); in k3_r5_lockstep_reset()
317 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_lockstep_reset()
319 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { in k3_r5_lockstep_reset()
320 if (reset_control_deassert(core->reset)) in k3_r5_lockstep_reset()
321 dev_warn(core->dev, "local-reset deassert back failed\n"); in k3_r5_lockstep_reset()
333 list_for_each_entry_reverse(core, &cluster->cores, elem) { in k3_r5_lockstep_release()
334 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, in k3_r5_lockstep_release()
335 core->ti_sci_id); in k3_r5_lockstep_release()
337 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", in k3_r5_lockstep_release()
345 list_for_each_entry_reverse(core, &cluster->cores, elem) { in k3_r5_lockstep_release()
346 ret = reset_control_deassert(core->reset); in k3_r5_lockstep_release()
348 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", in k3_r5_lockstep_release()
357 list_for_each_entry_continue(core, &cluster->cores, elem) { in k3_r5_lockstep_release()
358 if (reset_control_assert(core->reset)) in k3_r5_lockstep_release()
359 dev_warn(core->dev, "local-reset assert back failed\n"); in k3_r5_lockstep_release()
361 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_lockstep_release()
363 list_for_each_entry_from(core, &cluster->cores, elem) { in k3_r5_lockstep_release()
364 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, in k3_r5_lockstep_release()
365 core->ti_sci_id)) in k3_r5_lockstep_release()
366 dev_warn(core->dev, "module-reset assert back failed\n"); in k3_r5_lockstep_release()
374 return ti_sci_proc_set_control(core->tsp, in k3_r5_core_halt()
380 return ti_sci_proc_set_control(core->tsp, in k3_r5_core_run()
386 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_request_mbox()
387 struct mbox_client *client = &kproc->client; in k3_r5_rproc_request_mbox()
388 struct device *dev = kproc->dev; in k3_r5_rproc_request_mbox()
391 client->dev = dev; in k3_r5_rproc_request_mbox()
392 client->tx_done = NULL; in k3_r5_rproc_request_mbox()
393 client->rx_callback = k3_r5_rproc_mbox_callback; in k3_r5_rproc_request_mbox()
394 client->tx_block = false; in k3_r5_rproc_request_mbox()
395 client->knows_txdone = false; in k3_r5_rproc_request_mbox()
397 kproc->mbox = mbox_request_channel(client, 0); in k3_r5_rproc_request_mbox()
398 if (IS_ERR(kproc->mbox)) { in k3_r5_rproc_request_mbox()
399 ret = -EBUSY; in k3_r5_rproc_request_mbox()
401 PTR_ERR(kproc->mbox)); in k3_r5_rproc_request_mbox()
406 * Ping the remote processor, this is only for sanity-sake for now; in k3_r5_rproc_request_mbox()
410 * will wait in the mailbox fifo until the remote processor is booted. in k3_r5_rproc_request_mbox()
412 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); in k3_r5_rproc_request_mbox()
415 mbox_free_channel(kproc->mbox); in k3_r5_rproc_request_mbox()
424 * execution from DDR requires the initial boot-strapping code to be run
430 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
440 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_prepare()
441 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_prepare()
442 struct k3_r5_core *core = kproc->core; in k3_r5_rproc_prepare()
443 struct device *dev = kproc->dev; in k3_r5_rproc_prepare()
449 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); in k3_r5_rproc_prepare()
454 /* Re-use LockStep-mode reset logic for Single-CPU mode */ in k3_r5_rproc_prepare()
455 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_rproc_prepare()
456 cluster->mode == CLUSTER_MODE_SINGLECPU) ? in k3_r5_rproc_prepare()
465 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization in k3_r5_rproc_prepare()
468 * auto-init, but account for it in case it is disabled in k3_r5_rproc_prepare()
470 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { in k3_r5_rproc_prepare()
481 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); in k3_r5_rproc_prepare()
484 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); in k3_r5_rproc_prepare()
498 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
500 * both cores, but with only Core0 unhalted. This function re-uses the same
507 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_unprepare()
508 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_unprepare()
509 struct k3_r5_core *core = kproc->core; in k3_r5_rproc_unprepare()
510 struct device *dev = kproc->dev; in k3_r5_rproc_unprepare()
513 /* Re-use LockStep-mode reset logic for Single-CPU mode */ in k3_r5_rproc_unprepare()
514 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_rproc_unprepare()
515 cluster->mode == CLUSTER_MODE_SINGLECPU) ? in k3_r5_rproc_unprepare()
530 * unhalt both the cores to start the execution - Core1 needs to be unhalted
531 * first followed by Core0. The Split-mode requires that Core0 to be maintained
535 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
537 * flow as Split-mode for this. This callback is invoked only in remoteproc
542 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_start()
543 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_start()
544 struct device *dev = kproc->dev; in k3_r5_rproc_start()
553 boot_addr = rproc->bootaddr; in k3_r5_rproc_start()
558 core = kproc->core; in k3_r5_rproc_start()
559 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); in k3_r5_rproc_start()
564 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { in k3_r5_rproc_start()
565 list_for_each_entry_reverse(core, &cluster->cores, elem) { in k3_r5_rproc_start()
579 list_for_each_entry_continue(core, &cluster->cores, elem) { in k3_r5_rproc_start()
581 dev_warn(core->dev, "core halt back failed\n"); in k3_r5_rproc_start()
584 mbox_free_channel(kproc->mbox); in k3_r5_rproc_start()
595 * performed first on Core0 followed by Core1. The Split-mode requires that
599 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
601 * flow as Split-mode for this.
606 * be done here, but is preferred to be done in the .unprepare() ops - this
614 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_stop()
615 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_stop()
616 struct k3_r5_core *core = kproc->core; in k3_r5_rproc_stop()
620 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { in k3_r5_rproc_stop()
621 list_for_each_entry(core, &cluster->cores, elem) { in k3_r5_rproc_stop()
634 mbox_free_channel(kproc->mbox); in k3_r5_rproc_stop()
639 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { in k3_r5_rproc_stop()
641 dev_warn(core->dev, "core run back failed\n"); in k3_r5_rproc_stop()
648 * Attach to a running R5F remote processor (IPC-only mode)
650 * The R5F attach callback only needs to request the mailbox, the remote
651 * processor is already booted, so there is no need to issue any TI-SCI
652 * commands to boot the R5F cores in IPC-only mode. This callback is invoked
653 * only in IPC-only mode.
657 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_attach()
658 struct device *dev = kproc->dev; in k3_r5_rproc_attach()
665 dev_info(dev, "R5F core initialized in IPC-only mode\n"); in k3_r5_rproc_attach()
670 * Detach from a running R5F remote processor (IPC-only mode)
673 * and only needs to release the mailbox, the R5F cores are not stopped and
674 * will be left in booted state in IPC-only mode. This callback is invoked
675 * only in IPC-only mode.
679 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_detach()
680 struct device *dev = kproc->dev; in k3_r5_rproc_detach()
682 mbox_free_channel(kproc->mbox); in k3_r5_rproc_detach()
683 dev_info(dev, "R5F core deinitialized in IPC-only mode\n"); in k3_r5_rproc_detach()
689 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
690 * firmwares follow a design-by-contract approach and are expected to have the
695 * IPC-only mode.
700 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_get_loaded_rsc_table()
701 struct device *dev = kproc->dev; in k3_r5_get_loaded_rsc_table()
703 if (!kproc->rmem[0].cpu_addr) { in k3_r5_get_loaded_rsc_table()
704 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); in k3_r5_get_loaded_rsc_table()
705 return ERR_PTR(-ENOMEM); in k3_r5_get_loaded_rsc_table()
709 * NOTE: The resource table size is currently hard-coded to a maximum in k3_r5_get_loaded_rsc_table()
713 * the hard-coded value suffices to support the IPC-only mode. in k3_r5_get_loaded_rsc_table()
716 return (struct resource_table *)kproc->rmem[0].cpu_addr; in k3_r5_get_loaded_rsc_table()
729 struct k3_r5_rproc *kproc = rproc->priv; in k3_r5_rproc_da_to_va()
730 struct k3_r5_core *core = kproc->core; in k3_r5_rproc_da_to_va()
741 for (i = 0; i < core->num_mems; i++) { in k3_r5_rproc_da_to_va()
742 bus_addr = core->mem[i].bus_addr; in k3_r5_rproc_da_to_va()
743 dev_addr = core->mem[i].dev_addr; in k3_r5_rproc_da_to_va()
744 size = core->mem[i].size; in k3_r5_rproc_da_to_va()
746 /* handle R5-view addresses of TCMs */ in k3_r5_rproc_da_to_va()
748 offset = da - dev_addr; in k3_r5_rproc_da_to_va()
749 va = core->mem[i].cpu_addr + offset; in k3_r5_rproc_da_to_va()
753 /* handle SoC-view addresses of TCMs */ in k3_r5_rproc_da_to_va()
755 offset = da - bus_addr; in k3_r5_rproc_da_to_va()
756 va = core->mem[i].cpu_addr + offset; in k3_r5_rproc_da_to_va()
761 /* handle any SRAM regions using SoC-view addresses */ in k3_r5_rproc_da_to_va()
762 for (i = 0; i < core->num_sram; i++) { in k3_r5_rproc_da_to_va()
763 dev_addr = core->sram[i].dev_addr; in k3_r5_rproc_da_to_va()
764 size = core->sram[i].size; in k3_r5_rproc_da_to_va()
767 offset = da - dev_addr; in k3_r5_rproc_da_to_va()
768 va = core->sram[i].cpu_addr + offset; in k3_r5_rproc_da_to_va()
774 for (i = 0; i < kproc->num_rmems; i++) { in k3_r5_rproc_da_to_va()
775 dev_addr = kproc->rmem[i].dev_addr; in k3_r5_rproc_da_to_va()
776 size = kproc->rmem[i].size; in k3_r5_rproc_da_to_va()
779 offset = da - dev_addr; in k3_r5_rproc_da_to_va()
780 va = kproc->rmem[i].cpu_addr + offset; in k3_r5_rproc_da_to_va()
800 * Each R5FSS has a cluster-level setting for configuring the processor
801 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
802 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
804 * called Single-CPU mode. Each R5F core has a number of settings to either
810 * This function is used to pre-configure these settings for each R5F core, and
816 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
817 * for LockStep-mode is dictated by an eFUSE register bit, and the config
820 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
828 * This is overcome by switching to Split-mode initially and then programming
834 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_configure()
835 struct device *dev = kproc->dev; in k3_r5_rproc_configure()
844 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_rproc_configure()
845 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_rproc_configure()
846 cluster->mode == CLUSTER_MODE_SINGLECPU || in k3_r5_rproc_configure()
847 cluster->mode == CLUSTER_MODE_SINGLECORE) { in k3_r5_rproc_configure()
850 core = kproc->core; in k3_r5_rproc_configure()
853 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, in k3_r5_rproc_configure()
865 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { in k3_r5_rproc_configure()
866 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); in k3_r5_rproc_configure()
867 cluster->mode = CLUSTER_MODE_SINGLECPU; in k3_r5_rproc_configure()
871 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { in k3_r5_rproc_configure()
872 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); in k3_r5_rproc_configure()
873 cluster->mode = CLUSTER_MODE_SPLIT; in k3_r5_rproc_configure()
881 * Single-CPU configuration bit can only be configured in k3_r5_rproc_configure()
886 if (cluster->mode == CLUSTER_MODE_SINGLECPU || in k3_r5_rproc_configure()
887 cluster->mode == CLUSTER_MODE_SINGLECORE) { in k3_r5_rproc_configure()
891 * LockStep configuration bit is Read-only on Split-mode in k3_r5_rproc_configure()
901 if (core->atcm_enable) in k3_r5_rproc_configure()
906 if (core->btcm_enable) in k3_r5_rproc_configure()
911 if (core->loczrama) in k3_r5_rproc_configure()
916 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { in k3_r5_rproc_configure()
922 list_for_each_entry(temp, &cluster->cores, elem) { in k3_r5_rproc_configure()
931 ret = ti_sci_proc_set_config(temp->tsp, boot_vec, in k3_r5_rproc_configure()
939 ret = ti_sci_proc_set_config(core->tsp, boot_vec, in k3_r5_rproc_configure()
946 ret = ti_sci_proc_set_config(core->tsp, boot_vec, in k3_r5_rproc_configure()
956 struct device *dev = kproc->dev; in k3_r5_reserved_mem_init()
963 num_rmems = of_property_count_elems_of_size(np, "memory-region", in k3_r5_reserved_mem_init()
968 return -EINVAL; in k3_r5_reserved_mem_init()
973 return -EINVAL; in k3_r5_reserved_mem_init()
984 num_rmems--; in k3_r5_reserved_mem_init()
985 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); in k3_r5_reserved_mem_init()
986 if (!kproc->rmem) { in k3_r5_reserved_mem_init()
987 ret = -ENOMEM; in k3_r5_reserved_mem_init()
993 rmem_np = of_parse_phandle(np, "memory-region", i + 1); in k3_r5_reserved_mem_init()
995 ret = -EINVAL; in k3_r5_reserved_mem_init()
1002 ret = -EINVAL; in k3_r5_reserved_mem_init()
1007 kproc->rmem[i].bus_addr = rmem->base; in k3_r5_reserved_mem_init()
1011 * the 32-bit processor addresses to 64-bit bus addresses. The in k3_r5_reserved_mem_init()
1013 * is currently not supported, so 64-bit address regions are not in k3_r5_reserved_mem_init()
1015 * addresses/supported memory regions are restricted to 32-bit in k3_r5_reserved_mem_init()
1018 kproc->rmem[i].dev_addr = (u32)rmem->base; in k3_r5_reserved_mem_init()
1019 kproc->rmem[i].size = rmem->size; in k3_r5_reserved_mem_init()
1020 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); in k3_r5_reserved_mem_init()
1021 if (!kproc->rmem[i].cpu_addr) { in k3_r5_reserved_mem_init()
1023 i + 1, &rmem->base, &rmem->size); in k3_r5_reserved_mem_init()
1024 ret = -ENOMEM; in k3_r5_reserved_mem_init()
1029 i + 1, &kproc->rmem[i].bus_addr, in k3_r5_reserved_mem_init()
1030 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, in k3_r5_reserved_mem_init()
1031 kproc->rmem[i].dev_addr); in k3_r5_reserved_mem_init()
1033 kproc->num_rmems = num_rmems; in k3_r5_reserved_mem_init()
1038 for (i--; i >= 0; i--) in k3_r5_reserved_mem_init()
1039 iounmap(kproc->rmem[i].cpu_addr); in k3_r5_reserved_mem_init()
1040 kfree(kproc->rmem); in k3_r5_reserved_mem_init()
1050 for (i = 0; i < kproc->num_rmems; i++) in k3_r5_reserved_mem_exit()
1051 iounmap(kproc->rmem[i].cpu_addr); in k3_r5_reserved_mem_exit()
1052 kfree(kproc->rmem); in k3_r5_reserved_mem_exit()
1054 of_reserved_mem_device_release(kproc->dev); in k3_r5_reserved_mem_exit()
1060 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1061 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1063 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1072 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_adjust_tcm_sizes()
1073 struct k3_r5_core *core = kproc->core; in k3_r5_adjust_tcm_sizes()
1074 struct device *cdev = core->dev; in k3_r5_adjust_tcm_sizes()
1077 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_adjust_tcm_sizes()
1078 cluster->mode == CLUSTER_MODE_SINGLECPU || in k3_r5_adjust_tcm_sizes()
1079 cluster->mode == CLUSTER_MODE_SINGLECORE || in k3_r5_adjust_tcm_sizes()
1080 !cluster->soc_data->tcm_is_double) in k3_r5_adjust_tcm_sizes()
1083 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_adjust_tcm_sizes()
1085 WARN_ON(core->mem[0].size != SZ_64K); in k3_r5_adjust_tcm_sizes()
1086 WARN_ON(core->mem[1].size != SZ_64K); in k3_r5_adjust_tcm_sizes()
1088 core->mem[0].size /= 2; in k3_r5_adjust_tcm_sizes()
1089 core->mem[1].size /= 2; in k3_r5_adjust_tcm_sizes()
1092 core->mem[0].size, core->mem[1].size); in k3_r5_adjust_tcm_sizes()
1097 * This function checks and configures a R5F core for IPC-only or remoteproc
1098 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1099 * the core has been loaded and started by a bootloader. The IPC-only mode is
1104 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1111 struct k3_r5_cluster *cluster = kproc->cluster; in k3_r5_rproc_configure_mode()
1112 struct k3_r5_core *core = kproc->core; in k3_r5_rproc_configure_mode()
1113 struct device *cdev = core->dev; in k3_r5_rproc_configure_mode()
1119 enum cluster_mode mode = cluster->mode; in k3_r5_rproc_configure_mode()
1122 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_rproc_configure_mode()
1124 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, in k3_r5_rproc_configure_mode()
1136 ret = reset_control_status(core->reset); in k3_r5_rproc_configure_mode()
1143 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, in k3_r5_rproc_configure_mode()
1164 * IPC-only mode detection requires both local and module resets to in k3_r5_rproc_configure_mode()
1170 dev_info(cdev, "configured R5F for IPC-only mode\n"); in k3_r5_rproc_configure_mode()
1171 kproc->rproc->state = RPROC_DETACHED; in k3_r5_rproc_configure_mode()
1173 /* override rproc ops with only required IPC-only mode ops */ in k3_r5_rproc_configure_mode()
1174 kproc->rproc->ops->prepare = NULL; in k3_r5_rproc_configure_mode()
1175 kproc->rproc->ops->unprepare = NULL; in k3_r5_rproc_configure_mode()
1176 kproc->rproc->ops->start = NULL; in k3_r5_rproc_configure_mode()
1177 kproc->rproc->ops->stop = NULL; in k3_r5_rproc_configure_mode()
1178 kproc->rproc->ops->attach = k3_r5_rproc_attach; in k3_r5_rproc_configure_mode()
1179 kproc->rproc->ops->detach = k3_r5_rproc_detach; in k3_r5_rproc_configure_mode()
1180 kproc->rproc->ops->get_loaded_rsc_table = in k3_r5_rproc_configure_mode()
1190 ret = -EINVAL; in k3_r5_rproc_configure_mode()
1193 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ in k3_r5_rproc_configure_mode()
1196 cluster->mode = mode; in k3_r5_rproc_configure_mode()
1197 core->atcm_enable = atcm_enable; in k3_r5_rproc_configure_mode()
1198 core->btcm_enable = btcm_enable; in k3_r5_rproc_configure_mode()
1199 core->loczrama = loczrama; in k3_r5_rproc_configure_mode()
1200 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; in k3_r5_rproc_configure_mode()
1201 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; in k3_r5_rproc_configure_mode()
1210 struct device *dev = &pdev->dev; in k3_r5_cluster_rproc_init()
1218 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_cluster_rproc_init()
1219 list_for_each_entry(core, &cluster->cores, elem) { in k3_r5_cluster_rproc_init()
1220 cdev = core->dev; in k3_r5_cluster_rproc_init()
1223 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", in k3_r5_cluster_rproc_init()
1231 ret = -ENOMEM; in k3_r5_cluster_rproc_init()
1236 rproc->has_iommu = false; in k3_r5_cluster_rproc_init()
1238 rproc->recovery_disabled = true; in k3_r5_cluster_rproc_init()
1240 kproc = rproc->priv; in k3_r5_cluster_rproc_init()
1241 kproc->cluster = cluster; in k3_r5_cluster_rproc_init()
1242 kproc->core = core; in k3_r5_cluster_rproc_init()
1243 kproc->dev = cdev; in k3_r5_cluster_rproc_init()
1244 kproc->rproc = rproc; in k3_r5_cluster_rproc_init()
1245 core->rproc = rproc; in k3_r5_cluster_rproc_init()
1276 /* create only one rproc in lockstep, single-cpu or in k3_r5_cluster_rproc_init()
1279 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_cluster_rproc_init()
1280 cluster->mode == CLUSTER_MODE_SINGLECPU || in k3_r5_cluster_rproc_init()
1281 cluster->mode == CLUSTER_MODE_SINGLECORE) in k3_r5_cluster_rproc_init()
1288 if (rproc->state == RPROC_ATTACHED) { in k3_r5_cluster_rproc_init()
1291 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", in k3_r5_cluster_rproc_init()
1302 core->rproc = NULL; in k3_r5_cluster_rproc_init()
1304 /* undo core0 upon any failures on core1 in split-mode */ in k3_r5_cluster_rproc_init()
1305 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { in k3_r5_cluster_rproc_init()
1307 rproc = core->rproc; in k3_r5_cluster_rproc_init()
1308 kproc = rproc->priv; in k3_r5_cluster_rproc_init()
1323 * lockstep mode and single-cpu modes have only one rproc associated in k3_r5_cluster_rproc_exit()
1324 * with first core, whereas split-mode has two rprocs associated with in k3_r5_cluster_rproc_exit()
1327 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || in k3_r5_cluster_rproc_exit()
1328 cluster->mode == CLUSTER_MODE_SINGLECPU) ? in k3_r5_cluster_rproc_exit()
1329 list_first_entry(&cluster->cores, struct k3_r5_core, elem) : in k3_r5_cluster_rproc_exit()
1330 list_last_entry(&cluster->cores, struct k3_r5_core, elem); in k3_r5_cluster_rproc_exit()
1332 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { in k3_r5_cluster_rproc_exit()
1333 rproc = core->rproc; in k3_r5_cluster_rproc_exit()
1334 kproc = rproc->priv; in k3_r5_cluster_rproc_exit()
1336 if (rproc->state == RPROC_ATTACHED) { in k3_r5_cluster_rproc_exit()
1339 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); in k3_r5_cluster_rproc_exit()
1349 core->rproc = NULL; in k3_r5_cluster_rproc_exit()
1357 struct device *dev = &pdev->dev; in k3_r5_core_of_get_internal_memories()
1363 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); in k3_r5_core_of_get_internal_memories()
1364 if (!core->mem) in k3_r5_core_of_get_internal_memories()
1365 return -ENOMEM; in k3_r5_core_of_get_internal_memories()
1373 return -EINVAL; in k3_r5_core_of_get_internal_memories()
1375 if (!devm_request_mem_region(dev, res->start, in k3_r5_core_of_get_internal_memories()
1380 return -EBUSY; in k3_r5_core_of_get_internal_memories()
1384 * TCMs are designed in general to support RAM-like backing in k3_r5_core_of_get_internal_memories()
1385 * memories. So, map these as Normal Non-Cached memories. This in k3_r5_core_of_get_internal_memories()
1390 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, in k3_r5_core_of_get_internal_memories()
1392 if (!core->mem[i].cpu_addr) { in k3_r5_core_of_get_internal_memories()
1394 return -ENOMEM; in k3_r5_core_of_get_internal_memories()
1396 core->mem[i].bus_addr = res->start; in k3_r5_core_of_get_internal_memories()
1407 core->mem[i].dev_addr = core->loczrama ? in k3_r5_core_of_get_internal_memories()
1410 core->mem[i].dev_addr = core->loczrama ? in k3_r5_core_of_get_internal_memories()
1413 core->mem[i].size = resource_size(res); in k3_r5_core_of_get_internal_memories()
1416 mem_names[i], &core->mem[i].bus_addr, in k3_r5_core_of_get_internal_memories()
1417 core->mem[i].size, core->mem[i].cpu_addr, in k3_r5_core_of_get_internal_memories()
1418 core->mem[i].dev_addr); in k3_r5_core_of_get_internal_memories()
1420 core->num_mems = num_mems; in k3_r5_core_of_get_internal_memories()
1428 struct device_node *np = pdev->dev.of_node; in k3_r5_core_of_get_sram_memories()
1429 struct device *dev = &pdev->dev; in k3_r5_core_of_get_sram_memories()
1437 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", in k3_r5_core_of_get_sram_memories()
1442 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); in k3_r5_core_of_get_sram_memories()
1443 if (!core->sram) in k3_r5_core_of_get_sram_memories()
1444 return -ENOMEM; in k3_r5_core_of_get_sram_memories()
1449 return -EINVAL; in k3_r5_core_of_get_sram_memories()
1453 return -EINVAL; in k3_r5_core_of_get_sram_memories()
1459 return -EINVAL; in k3_r5_core_of_get_sram_memories()
1461 core->sram[i].bus_addr = res.start; in k3_r5_core_of_get_sram_memories()
1462 core->sram[i].dev_addr = res.start; in k3_r5_core_of_get_sram_memories()
1463 core->sram[i].size = resource_size(&res); in k3_r5_core_of_get_sram_memories()
1464 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, in k3_r5_core_of_get_sram_memories()
1466 if (!core->sram[i].cpu_addr) { in k3_r5_core_of_get_sram_memories()
1469 return -ENOMEM; in k3_r5_core_of_get_sram_memories()
1473 i, &core->sram[i].bus_addr, in k3_r5_core_of_get_sram_memories()
1474 core->sram[i].size, core->sram[i].cpu_addr, in k3_r5_core_of_get_sram_memories()
1475 core->sram[i].dev_addr); in k3_r5_core_of_get_sram_memories()
1477 core->num_sram = num_sram; in k3_r5_core_of_get_sram_memories()
1490 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", in k3_r5_core_of_get_tsp()
1497 return ERR_PTR(-ENOMEM); in k3_r5_core_of_get_tsp()
1499 tsp->dev = dev; in k3_r5_core_of_get_tsp()
1500 tsp->sci = sci; in k3_r5_core_of_get_tsp()
1501 tsp->ops = &sci->ops.proc_ops; in k3_r5_core_of_get_tsp()
1502 tsp->proc_id = temp[0]; in k3_r5_core_of_get_tsp()
1503 tsp->host_id = temp[1]; in k3_r5_core_of_get_tsp()
1510 struct device *dev = &pdev->dev; in k3_r5_core_of_init()
1516 return -ENOMEM; in k3_r5_core_of_init()
1520 ret = -ENOMEM; in k3_r5_core_of_init()
1524 core->dev = dev; in k3_r5_core_of_init()
1526 * Use SoC Power-on-Reset values as default if no DT properties are in k3_r5_core_of_init()
1529 core->atcm_enable = 0; in k3_r5_core_of_init()
1530 core->btcm_enable = 1; in k3_r5_core_of_init()
1531 core->loczrama = 1; in k3_r5_core_of_init()
1533 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); in k3_r5_core_of_init()
1534 if (ret < 0 && ret != -EINVAL) { in k3_r5_core_of_init()
1535 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", in k3_r5_core_of_init()
1540 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); in k3_r5_core_of_init()
1541 if (ret < 0 && ret != -EINVAL) { in k3_r5_core_of_init()
1542 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", in k3_r5_core_of_init()
1547 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); in k3_r5_core_of_init()
1548 if (ret < 0 && ret != -EINVAL) { in k3_r5_core_of_init()
1553 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); in k3_r5_core_of_init()
1554 if (IS_ERR(core->ti_sci)) { in k3_r5_core_of_init()
1555 ret = PTR_ERR(core->ti_sci); in k3_r5_core_of_init()
1556 if (ret != -EPROBE_DEFER) { in k3_r5_core_of_init()
1557 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", in k3_r5_core_of_init()
1560 core->ti_sci = NULL; in k3_r5_core_of_init()
1564 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); in k3_r5_core_of_init()
1566 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); in k3_r5_core_of_init()
1570 core->reset = devm_reset_control_get_exclusive(dev, NULL); in k3_r5_core_of_init()
1571 if (IS_ERR_OR_NULL(core->reset)) { in k3_r5_core_of_init()
1572 ret = PTR_ERR_OR_ZERO(core->reset); in k3_r5_core_of_init()
1574 ret = -ENODEV; in k3_r5_core_of_init()
1575 if (ret != -EPROBE_DEFER) { in k3_r5_core_of_init()
1582 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); in k3_r5_core_of_init()
1583 if (IS_ERR(core->tsp)) { in k3_r5_core_of_init()
1584 ret = PTR_ERR(core->tsp); in k3_r5_core_of_init()
1585 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", in k3_r5_core_of_init()
1603 ret = ti_sci_proc_request(core->tsp); in k3_r5_core_of_init()
1626 struct device *dev = &pdev->dev; in k3_r5_core_of_exit()
1629 ret = ti_sci_proc_release(core->tsp); in k3_r5_core_of_exit()
1643 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { in k3_r5_cluster_of_exit()
1644 list_del(&core->elem); in k3_r5_cluster_of_exit()
1645 cpdev = to_platform_device(core->dev); in k3_r5_cluster_of_exit()
1653 struct device *dev = &pdev->dev; in k3_r5_cluster_of_init()
1663 ret = -ENODEV; in k3_r5_cluster_of_init()
1673 put_device(&cpdev->dev); in k3_r5_cluster_of_init()
1679 put_device(&cpdev->dev); in k3_r5_cluster_of_init()
1680 list_add_tail(&core->elem, &cluster->cores); in k3_r5_cluster_of_init()
1692 struct device *dev = &pdev->dev; in k3_r5_probe()
1699 data = of_device_get_match_data(&pdev->dev); in k3_r5_probe()
1701 dev_err(dev, "SoC-specific data is not defined\n"); in k3_r5_probe()
1702 return -ENODEV; in k3_r5_probe()
1707 return -ENOMEM; in k3_r5_probe()
1709 cluster->dev = dev; in k3_r5_probe()
1710 cluster->soc_data = data; in k3_r5_probe()
1711 INIT_LIST_HEAD(&cluster->cores); in k3_r5_probe()
1713 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); in k3_r5_probe()
1714 if (ret < 0 && ret != -EINVAL) { in k3_r5_probe()
1715 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", in k3_r5_probe()
1720 if (ret == -EINVAL) { in k3_r5_probe()
1722 * default to most common efuse configurations - Split-mode on AM64x in k3_r5_probe()
1723 * and LockStep-mode on all others in k3_r5_probe()
1724 * default to most common efuse configurations - in k3_r5_probe()
1725 * Split-mode on AM64x in k3_r5_probe()
1727 * LockStep-mode on all others in k3_r5_probe()
1729 if (!data->is_single_core) in k3_r5_probe()
1730 cluster->mode = data->single_cpu_mode ? in k3_r5_probe()
1733 cluster->mode = CLUSTER_MODE_SINGLECORE; in k3_r5_probe()
1736 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || in k3_r5_probe()
1737 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { in k3_r5_probe()
1738 dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); in k3_r5_probe()
1739 return -EINVAL; in k3_r5_probe()
1743 if (num_cores != 2 && !data->is_single_core) { in k3_r5_probe()
1746 return -ENODEV; in k3_r5_probe()
1749 if (num_cores != 1 && data->is_single_core) { in k3_r5_probe()
1752 return -ENODEV; in k3_r5_probe()
1817 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1818 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1819 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1820 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
1821 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
1822 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
1839 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");