Lines Matching full:block
21 * For DMA buffers the storage is sub-divided into so called blocks. Each block
22 * has its own memory buffer. The size of the block is the granularity at which
24 * basic unit of data exchange from one sample to one block decreases the
27 * sample the overhead will be x for each sample. Whereas when using a block
35 * them with data. Block on the outgoing queue have been filled with data and
38 * A block can be in one of the following states:
40 * the block.
43 * * Owned by the DMA controller: The DMA controller is processing the block
48 * * Dead: A block that is dead has been marked as to be freed. It might still
51 * incoming or outgoing queue the block will be freed.
54 * with both the block structure as well as the storage memory for the block
55 * will be freed when the last reference to the block is dropped. This means a
56 * block must not be accessed without holding a reference.
64 * converter to the memory region of the block. Once the DMA transfer has been
66 * block.
68 * Prior to this it must set the bytes_used field of the block contains
70 * size of the block, but if the DMA hardware has certain alignment requirements
73 * datum, i.e. the block must not contain partial samples.
75 * The driver must call iio_dma_buffer_block_done() for each block it has
77 * perform a DMA transfer for the block, e.g. because the buffer was disabled
78 * before the block transfer was started. In this case it should set bytes_used
95 struct iio_dma_buffer_block *block = container_of(kref, in iio_buffer_block_release() local
98 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); in iio_buffer_block_release()
100 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), in iio_buffer_block_release()
101 block->vaddr, block->phys_addr); in iio_buffer_block_release()
103 iio_buffer_put(&block->queue->buffer); in iio_buffer_block_release()
104 kfree(block); in iio_buffer_block_release()
107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block) in iio_buffer_block_get() argument
109 kref_get(&block->kref); in iio_buffer_block_get()
112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block) in iio_buffer_block_put() argument
114 kref_put(&block->kref, iio_buffer_block_release); in iio_buffer_block_put()
126 struct iio_dma_buffer_block *block, *_block; in iio_dma_buffer_cleanup_worker() local
133 list_for_each_entry_safe(block, _block, &block_list, head) in iio_dma_buffer_cleanup_worker()
134 iio_buffer_block_release(&block->kref); in iio_dma_buffer_cleanup_worker()
140 struct iio_dma_buffer_block *block; in iio_buffer_block_release_atomic() local
143 block = container_of(kref, struct iio_dma_buffer_block, kref); in iio_buffer_block_release_atomic()
146 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); in iio_buffer_block_release_atomic()
155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) in iio_buffer_block_put_atomic() argument
157 kref_put(&block->kref, iio_buffer_block_release_atomic); in iio_buffer_block_put_atomic()
168 struct iio_dma_buffer_block *block; in iio_dma_buffer_alloc_block() local
170 block = kzalloc(sizeof(*block), GFP_KERNEL); in iio_dma_buffer_alloc_block()
171 if (!block) in iio_dma_buffer_alloc_block()
174 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), in iio_dma_buffer_alloc_block()
175 &block->phys_addr, GFP_KERNEL); in iio_dma_buffer_alloc_block()
176 if (!block->vaddr) { in iio_dma_buffer_alloc_block()
177 kfree(block); in iio_dma_buffer_alloc_block()
181 block->size = size; in iio_dma_buffer_alloc_block()
182 block->state = IIO_BLOCK_STATE_DONE; in iio_dma_buffer_alloc_block()
183 block->queue = queue; in iio_dma_buffer_alloc_block()
184 INIT_LIST_HEAD(&block->head); in iio_dma_buffer_alloc_block()
185 kref_init(&block->kref); in iio_dma_buffer_alloc_block()
189 return block; in iio_dma_buffer_alloc_block()
192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) in _iio_dma_buffer_block_done() argument
194 if (block->state != IIO_BLOCK_STATE_DEAD) in _iio_dma_buffer_block_done()
195 block->state = IIO_BLOCK_STATE_DONE; in _iio_dma_buffer_block_done()
199 * iio_dma_buffer_block_done() - Indicate that a block has been completed
200 * @block: The completed block
202 * Should be called when the DMA controller has finished handling the block to
203 * pass back ownership of the block to the queue.
205 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) in iio_dma_buffer_block_done() argument
207 struct iio_dma_buffer_queue *queue = block->queue; in iio_dma_buffer_block_done()
211 _iio_dma_buffer_block_done(block); in iio_dma_buffer_block_done()
214 iio_buffer_block_put_atomic(block); in iio_dma_buffer_block_done()
220 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
226 * stopped. This will set bytes_used to 0 for each block in the list and then
232 struct iio_dma_buffer_block *block, *_block; in iio_dma_buffer_block_list_abort() local
236 list_for_each_entry_safe(block, _block, list, head) { in iio_dma_buffer_block_list_abort()
237 list_del(&block->head); in iio_dma_buffer_block_list_abort()
238 block->bytes_used = 0; in iio_dma_buffer_block_list_abort()
239 _iio_dma_buffer_block_done(block); in iio_dma_buffer_block_list_abort()
240 iio_buffer_block_put_atomic(block); in iio_dma_buffer_block_list_abort()
248 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) in iio_dma_block_reusable() argument
251 * If the core owns the block it can be re-used. This should be the in iio_dma_block_reusable()
253 * not support abort and has not given back the block yet. in iio_dma_block_reusable()
255 switch (block->state) { in iio_dma_block_reusable()
274 struct iio_dma_buffer_block *block; in iio_dma_buffer_request_update() local
282 * buffering scheme with usually one block at a time being used by the in iio_dma_buffer_request_update()
299 block = queue->fileio.blocks[i]; in iio_dma_buffer_request_update()
302 if (block && (!iio_dma_block_reusable(block) || !try_reuse)) in iio_dma_buffer_request_update()
303 block->state = IIO_BLOCK_STATE_DEAD; in iio_dma_buffer_request_update()
317 block = queue->fileio.blocks[i]; in iio_dma_buffer_request_update()
318 if (block->state == IIO_BLOCK_STATE_DEAD) { in iio_dma_buffer_request_update()
320 iio_buffer_block_put(block); in iio_dma_buffer_request_update()
321 block = NULL; in iio_dma_buffer_request_update()
323 block->size = size; in iio_dma_buffer_request_update()
326 block = NULL; in iio_dma_buffer_request_update()
329 if (!block) { in iio_dma_buffer_request_update()
330 block = iio_dma_buffer_alloc_block(queue, size); in iio_dma_buffer_request_update()
331 if (!block) { in iio_dma_buffer_request_update()
335 queue->fileio.blocks[i] = block; in iio_dma_buffer_request_update()
338 block->state = IIO_BLOCK_STATE_QUEUED; in iio_dma_buffer_request_update()
339 list_add_tail(&block->head, &queue->incoming); in iio_dma_buffer_request_update()
373 struct iio_dma_buffer_block *block) in iio_dma_buffer_submit_block() argument
378 * If the hardware has already been removed we put the block into in iio_dma_buffer_submit_block()
385 block->state = IIO_BLOCK_STATE_ACTIVE; in iio_dma_buffer_submit_block()
386 iio_buffer_block_get(block); in iio_dma_buffer_submit_block()
387 ret = queue->ops->submit(queue, block); in iio_dma_buffer_submit_block()
399 iio_buffer_block_put(block); in iio_dma_buffer_submit_block()
417 struct iio_dma_buffer_block *block, *_block; in iio_dma_buffer_enable() local
421 list_for_each_entry_safe(block, _block, &queue->incoming, head) { in iio_dma_buffer_enable()
422 list_del(&block->head); in iio_dma_buffer_enable()
423 iio_dma_buffer_submit_block(queue, block); in iio_dma_buffer_enable()
456 struct iio_dma_buffer_block *block) in iio_dma_buffer_enqueue() argument
458 if (block->state == IIO_BLOCK_STATE_DEAD) { in iio_dma_buffer_enqueue()
459 iio_buffer_block_put(block); in iio_dma_buffer_enqueue()
461 iio_dma_buffer_submit_block(queue, block); in iio_dma_buffer_enqueue()
463 block->state = IIO_BLOCK_STATE_QUEUED; in iio_dma_buffer_enqueue()
464 list_add_tail(&block->head, &queue->incoming); in iio_dma_buffer_enqueue()
471 struct iio_dma_buffer_block *block; in iio_dma_buffer_dequeue() local
477 block = queue->fileio.blocks[idx]; in iio_dma_buffer_dequeue()
479 if (block->state == IIO_BLOCK_STATE_DONE) { in iio_dma_buffer_dequeue()
483 block = NULL; in iio_dma_buffer_dequeue()
488 return block; in iio_dma_buffer_dequeue()
504 struct iio_dma_buffer_block *block; in iio_dma_buffer_read() local
513 block = iio_dma_buffer_dequeue(queue); in iio_dma_buffer_read()
514 if (block == NULL) { in iio_dma_buffer_read()
519 queue->fileio.active_block = block; in iio_dma_buffer_read()
521 block = queue->fileio.active_block; in iio_dma_buffer_read()
525 if (n > block->bytes_used - queue->fileio.pos) in iio_dma_buffer_read()
526 n = block->bytes_used - queue->fileio.pos; in iio_dma_buffer_read()
528 if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) { in iio_dma_buffer_read()
535 if (queue->fileio.pos == block->bytes_used) { in iio_dma_buffer_read()
537 iio_dma_buffer_enqueue(queue, block); in iio_dma_buffer_read()
559 struct iio_dma_buffer_block *block; in iio_dma_buffer_data_available() local
564 * For counting the available bytes we'll use the size of the block not in iio_dma_buffer_data_available()
565 * the number of actual bytes available in the block. Otherwise it is in iio_dma_buffer_data_available()
577 block = queue->fileio.blocks[i]; in iio_dma_buffer_data_available()
579 if (block != queue->fileio.active_block in iio_dma_buffer_data_available()
580 && block->state == IIO_BLOCK_STATE_DONE) in iio_dma_buffer_data_available()
581 data_available += block->size; in iio_dma_buffer_data_available()