Lines Matching +full:mi +full:- +full:v

1 /* SPDX-License-Identifier: GPL-2.0 */
22 * two-step process only requires 1 finite field reduction for every 8
58 MI .req v21 label
65 .arch armv8-a+crypto
72 * Computes the product of two 128-bit polynomials in X and Y and XORs the
73 * components of the 256-bit product into LO, MI, HI.
81 * MI += (X_0 + X_1) * (Y_0 + Y_1)
84 * Later, the 256-bit result can be extracted as:
105 eor MI.16b, MI.16b, v27.16b
111 * Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into
123 pmull MI.1q, v25.1d, v26.1d
129 * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
136 eor v4.16b, HI.16b, MI.16b
154 * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
159 * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
160 * product of two 128-bit polynomials in Montgomery form. We need to reduce it
173 * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
175 * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
177 * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
178 * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
179 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
181 * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
185 * V = V_1 : V_0 = g*(x) * (P_1 + T_0)
190 * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
220 eor MI.16b, MI.16b, MI.16b
305 * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
325 * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
328 * x0 - pointer to precomputed key powers h^8 ... h^1
329 * x1 - pointer to message blocks
330 * x2 - number of blocks to hash
331 * x3 - pointer to accumulator