Lines Matching +full:non +full:- +full:descriptive

1 // SPDX-License-Identifier: GPL-2.0
37 struct sched_group *group = sd->groups; in sched_domain_debug_one()
38 unsigned long flags = sd->flags; in sched_domain_debug_one()
43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); in sched_domain_debug_one()
45 cpumask_pr_args(sched_domain_span(sd)), sd->name); in sched_domain_debug_one()
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); in sched_domain_debug_one()
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); in sched_domain_debug_one()
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && in sched_domain_debug_one()
59 !(sd->child->flags & flag)) in sched_domain_debug_one()
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && in sched_domain_debug_one()
64 !(sd->parent->flags & flag)) in sched_domain_debug_one()
83 if (!(sd->flags & SD_OVERLAP) && in sched_domain_debug_one()
93 group->sgc->id, in sched_domain_debug_one()
96 if ((sd->flags & SD_OVERLAP) && in sched_domain_debug_one()
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) in sched_domain_debug_one()
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity); in sched_domain_debug_one()
105 if (group == sd->groups && sd->child && in sched_domain_debug_one()
106 !cpumask_equal(sched_domain_span(sd->child), in sched_domain_debug_one()
108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); in sched_domain_debug_one()
113 group = group->next; in sched_domain_debug_one()
115 if (group != sd->groups) in sched_domain_debug_one()
118 } while (group != sd->groups); in sched_domain_debug_one()
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); in sched_domain_debug_one()
124 if (sd->parent && in sched_domain_debug_one()
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) in sched_domain_debug_one()
126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); in sched_domain_debug_one()
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); in sched_domain_debug()
142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); in sched_domain_debug()
148 sd = sd->parent; in sched_domain_debug()
176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && in sd_degenerate()
177 (sd->groups != sd->groups->next)) in sd_degenerate()
181 if (sd->flags & (SD_WAKE_AFFINE)) in sd_degenerate()
190 unsigned long cflags = sd->flags, pflags = parent->flags; in sd_parent_degenerate()
199 if (parent->groups == parent->groups->next) in sd_parent_degenerate()
221 return -EPERM; in sched_energy_aware_handler()
244 tmp = pd->next; in free_pd()
255 pd = pd->next; in find_pd()
275 pd->em_pd = obj; in pd_init()
292 em_pd_nr_perf_states(pd->em_pd)); in perf_domain_debug()
293 pd = pd->next; in perf_domain_debug()
333 * - nr_pd: the number of performance domains
334 * - nr_cpus: the number of CPUs
335 * - nr_ps: the sum of the number of performance states of all performance
339 * It is generally not a good idea to use such a model in the wake-up path on
342 * with per-CPU DVFS and less than 8 performance states each, for example.
352 struct root_domain *rd = cpu_rq(cpu)->rd; in build_perf_domains()
384 gov = policy->governor; in build_perf_domains()
387 if (rd->pd) in build_perf_domains()
397 tmp->next = pd; in build_perf_domains()
405 nr_ps += em_pd_nr_perf_states(pd->em_pd); in build_perf_domains()
418 tmp = rd->pd; in build_perf_domains()
419 rcu_assign_pointer(rd->pd, pd); in build_perf_domains()
421 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); in build_perf_domains()
427 tmp = rd->pd; in build_perf_domains()
428 rcu_assign_pointer(rd->pd, NULL); in build_perf_domains()
430 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); in build_perf_domains()
442 cpupri_cleanup(&rd->cpupri); in free_rootdomain()
443 cpudl_cleanup(&rd->cpudl); in free_rootdomain()
444 free_cpumask_var(rd->dlo_mask); in free_rootdomain()
445 free_cpumask_var(rd->rto_mask); in free_rootdomain()
446 free_cpumask_var(rd->online); in free_rootdomain()
447 free_cpumask_var(rd->span); in free_rootdomain()
448 free_pd(rd->pd); in free_rootdomain()
457 raw_spin_lock_irqsave(&rq->lock, flags); in rq_attach_root()
459 if (rq->rd) { in rq_attach_root()
460 old_rd = rq->rd; in rq_attach_root()
462 if (cpumask_test_cpu(rq->cpu, old_rd->online)) in rq_attach_root()
465 cpumask_clear_cpu(rq->cpu, old_rd->span); in rq_attach_root()
472 if (!atomic_dec_and_test(&old_rd->refcount)) in rq_attach_root()
476 atomic_inc(&rd->refcount); in rq_attach_root()
477 rq->rd = rd; in rq_attach_root()
479 cpumask_set_cpu(rq->cpu, rd->span); in rq_attach_root()
480 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) in rq_attach_root()
483 raw_spin_unlock_irqrestore(&rq->lock, flags); in rq_attach_root()
486 call_rcu(&old_rd->rcu, free_rootdomain); in rq_attach_root()
491 atomic_inc(&rd->refcount); in sched_get_rd()
496 if (!atomic_dec_and_test(&rd->refcount)) in sched_put_rd()
499 call_rcu(&rd->rcu, free_rootdomain); in sched_put_rd()
504 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) in init_rootdomain()
506 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) in init_rootdomain()
508 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) in init_rootdomain()
510 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) in init_rootdomain()
514 rd->rto_cpu = -1; in init_rootdomain()
515 raw_spin_lock_init(&rd->rto_lock); in init_rootdomain()
516 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); in init_rootdomain()
519 init_dl_bw(&rd->dl_bw); in init_rootdomain()
520 if (cpudl_init(&rd->cpudl) != 0) in init_rootdomain()
523 if (cpupri_init(&rd->cpupri) != 0) in init_rootdomain()
528 cpudl_cleanup(&rd->cpudl); in init_rootdomain()
530 free_cpumask_var(rd->rto_mask); in init_rootdomain()
532 free_cpumask_var(rd->dlo_mask); in init_rootdomain()
534 free_cpumask_var(rd->online); in init_rootdomain()
536 free_cpumask_var(rd->span); in init_rootdomain()
538 return -ENOMEM; in init_rootdomain()
542 * By default the system creates a single root-domain with all CPUs as
579 tmp = sg->next; in free_sched_groups()
581 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) in free_sched_groups()
582 kfree(sg->sgc); in free_sched_groups()
584 if (atomic_dec_and_test(&sg->ref)) in free_sched_groups()
597 free_sched_groups(sd->groups, 1); in destroy_sched_domain()
599 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) in destroy_sched_domain()
600 kfree(sd->shared); in destroy_sched_domain()
609 struct sched_domain *parent = sd->parent; in destroy_sched_domains_rcu()
618 call_rcu(&sd->rcu, destroy_sched_domains_rcu); in destroy_sched_domains()
650 sds = sd->shared; in update_top_cache_domain()
680 struct sched_domain *parent = tmp->parent; in cpu_attach_domain()
685 tmp->parent = parent->parent; in cpu_attach_domain()
686 if (parent->parent) in cpu_attach_domain()
687 parent->parent->child = tmp; in cpu_attach_domain()
693 if (parent->flags & SD_PREFER_SIBLING) in cpu_attach_domain()
694 tmp->flags |= SD_PREFER_SIBLING; in cpu_attach_domain()
697 tmp = tmp->parent; in cpu_attach_domain()
702 sd = sd->parent; in cpu_attach_domain()
705 sd->child = NULL; in cpu_attach_domain()
711 tmp = rq->sd; in cpu_attach_domain()
712 rcu_assign_pointer(rq->sd, sd); in cpu_attach_domain()
749 * Given a node-distance table, for example:
759 * 0 ----- 1
763 * 3 ----- 2
771 * NUMA-2 0-3 0-3 0-3 0-3
772 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
774 * NUMA-1 0-1,3 0-2 1-3 0,2-3
777 * NUMA-0 0 1 2 3
782 * represented multiple times -- hence the "overlap" naming for this part of
786 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
790 * - the first group of each domain is its child domain; this
791 * gets us the first 0-1,3
792 * - the only uncovered node is 2, who's child domain is 1-3.
795 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
796 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
797 * end up at those groups (they would end up in group: 0-1,3).
820 * 0 ----- 1
824 * 2 ----- 3
832 * NUMA-2 0-3 0-3
833 * groups: {0-2},{1-3} {1-3},{0-2}
835 * NUMA-1 0-2 0-3 0-3 1-3
837 * NUMA-0 0 1 2 3
855 struct sd_data *sdd = sd->private; in build_balance_mask()
862 sibling = *per_cpu_ptr(sdd->sd, i); in build_balance_mask()
869 if (!sibling->child) in build_balance_mask()
873 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) in build_balance_mask()
884 * XXX: This creates per-node group entries; since the load-balancer will
885 * immediately access remote memory to construct this group's load-balance
901 if (sd->child) in build_group_from_child_sched_domain()
902 cpumask_copy(sg_span, sched_domain_span(sd->child)); in build_group_from_child_sched_domain()
906 atomic_inc(&sg->ref); in build_group_from_child_sched_domain()
914 struct sd_data *sdd = sd->private; in init_overlap_sched_group()
921 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); in init_overlap_sched_group()
922 if (atomic_inc_return(&sg->sgc->ref) == 1) in init_overlap_sched_group()
928 * Initialize sgc->capacity such that even if we mess up the in init_overlap_sched_group()
933 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); in init_overlap_sched_group()
934 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; in init_overlap_sched_group()
935 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; in init_overlap_sched_group()
944 struct sd_data *sdd = sd->private; in build_overlap_sched_groups()
956 sibling = *per_cpu_ptr(sdd->sd, i); in build_overlap_sched_groups()
983 last->next = sg; in build_overlap_sched_groups()
985 last->next = first; in build_overlap_sched_groups()
987 sd->groups = first; in build_overlap_sched_groups()
994 return -ENOMEM; in build_overlap_sched_groups()
999 * Package topology (also see the load-balance blurb in fair.c)
1004 * - Simultaneous multithreading (SMT)
1005 * - Multi-Core Cache (MC)
1006 * - Package (DIE)
1012 * sched_domain -> sched_group -> sched_group_capacity
1014 * `-' `-'
1016 * The sched_domains are per-CPU and have a two way link (parent & child) and
1032 * - or -
1034 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1035 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1036 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1049 * - The first is the balance_cpu (see should_we_balance() and the
1050 * load-balance blub in fair.c); for each group we only want 1 CPU to
1053 * - The second is the sched_group_capacity; we want all identical groups
1071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); in get_group()
1072 struct sched_domain *child = sd->child; in get_group()
1079 sg = *per_cpu_ptr(sdd->sg, cpu); in get_group()
1080 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); in get_group()
1083 already_visited = atomic_inc_return(&sg->ref) > 1; in get_group()
1085 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); in get_group()
1099 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); in get_group()
1100 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; in get_group()
1101 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; in get_group()
1108 * covered by the given span, will set each group's ->cpumask correctly,
1109 * and will initialize their ->sgc.
1117 struct sd_data *sdd = sd->private; in build_sched_groups()
1140 last->next = sg; in build_sched_groups()
1143 last->next = first; in build_sched_groups()
1144 sd->groups = first; in build_sched_groups()
1161 struct sched_group *sg = sd->groups; in init_sched_groups_capacity()
1166 int cpu, max_cpu = -1; in init_sched_groups_capacity()
1168 sg->group_weight = cpumask_weight(sched_group_span(sg)); in init_sched_groups_capacity()
1170 if (!(sd->flags & SD_ASYM_PACKING)) in init_sched_groups_capacity()
1179 sg->asym_prefer_cpu = max_cpu; in init_sched_groups_capacity()
1182 sg = sg->next; in init_sched_groups_capacity()
1183 } while (sg != sd->groups); in init_sched_groups_capacity()
1193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1196 static int default_relax_domain_level = -1;
1213 if (!attr || attr->relax_domain_level < 0) { in set_domain_attribute()
1218 request = attr->relax_domain_level; in set_domain_attribute()
1220 if (sd->level > request) { in set_domain_attribute()
1222 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); in set_domain_attribute()
1234 if (!atomic_read(&d->rd->refcount)) in __free_domain_allocs()
1235 free_rootdomain(&d->rd->rcu); in __free_domain_allocs()
1238 free_percpu(d->sd); in __free_domain_allocs()
1255 d->sd = alloc_percpu(struct sched_domain *); in __visit_domain_allocation_hell()
1256 if (!d->sd) in __visit_domain_allocation_hell()
1258 d->rd = alloc_rootdomain(); in __visit_domain_allocation_hell()
1259 if (!d->rd) in __visit_domain_allocation_hell()
1272 struct sd_data *sdd = sd->private; in claim_allocations()
1274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); in claim_allocations()
1275 *per_cpu_ptr(sdd->sd, cpu) = NULL; in claim_allocations()
1277 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) in claim_allocations()
1278 *per_cpu_ptr(sdd->sds, cpu) = NULL; in claim_allocations()
1280 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) in claim_allocations()
1281 *per_cpu_ptr(sdd->sg, cpu) = NULL; in claim_allocations()
1283 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) in claim_allocations()
1284 *per_cpu_ptr(sdd->sgc, cpu) = NULL; in claim_allocations()
1302 * These flags are purely descriptive of the topology and do not prescribe
1306 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1307 * SD_SHARE_PKG_RESOURCES - describes shared caches
1308 * SD_NUMA - describes NUMA topologies
1313 * SD_ASYM_PACKING - describes SMT quirks
1326 struct sd_data *sdd = &tl->data; in sd_init()
1327 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); in sd_init()
1334 sched_domains_curr_level = tl->numa_level; in sd_init()
1337 sd_weight = cpumask_weight(tl->mask(cpu)); in sd_init()
1339 if (tl->sd_flags) in sd_init()
1340 sd_flags = (*tl->sd_flags)(); in sd_init()
1375 .name = tl->name, in sd_init()
1379 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); in sd_init()
1387 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) in sd_init()
1388 sd->child->flags &= ~SD_PREFER_SIBLING; in sd_init()
1390 if (sd->flags & SD_SHARE_CPUCAPACITY) { in sd_init()
1391 sd->imbalance_pct = 110; in sd_init()
1393 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { in sd_init()
1394 sd->imbalance_pct = 117; in sd_init()
1395 sd->cache_nice_tries = 1; in sd_init()
1398 } else if (sd->flags & SD_NUMA) { in sd_init()
1399 sd->cache_nice_tries = 2; in sd_init()
1401 sd->flags &= ~SD_PREFER_SIBLING; in sd_init()
1402 sd->flags |= SD_SERIALIZE; in sd_init()
1403 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { in sd_init()
1404 sd->flags &= ~(SD_BALANCE_EXEC | in sd_init()
1411 sd->cache_nice_tries = 1; in sd_init()
1418 if (sd->flags & SD_SHARE_PKG_RESOURCES) { in sd_init()
1419 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); in sd_init()
1420 atomic_inc(&sd->shared->ref); in sd_init()
1421 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); in sd_init()
1424 sd->private = sdd; in sd_init()
1430 * Topology list, bottom-up.
1447 for (tl = sched_domain_topology; tl->mask; tl++)
1513 * - If the maximum distance between any nodes is 1 hop, the system
1515 * - If for two nodes A and B, located N > 1 hops away from each other,
1568 * O(nr_nodes^2) deduplicating selection sort -- in order to find the in sched_init_numa()
1591 sched_numa_warn("Node-distance not symmetric"); in sched_init_numa()
1594 sched_numa_warn("Node-0 not representative"); in sched_init_numa()
1697 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; in sched_init_numa()
1726 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1753 struct sd_data *sdd = &tl->data; in __sdt_alloc()
1755 sdd->sd = alloc_percpu(struct sched_domain *); in __sdt_alloc()
1756 if (!sdd->sd) in __sdt_alloc()
1757 return -ENOMEM; in __sdt_alloc()
1759 sdd->sds = alloc_percpu(struct sched_domain_shared *); in __sdt_alloc()
1760 if (!sdd->sds) in __sdt_alloc()
1761 return -ENOMEM; in __sdt_alloc()
1763 sdd->sg = alloc_percpu(struct sched_group *); in __sdt_alloc()
1764 if (!sdd->sg) in __sdt_alloc()
1765 return -ENOMEM; in __sdt_alloc()
1767 sdd->sgc = alloc_percpu(struct sched_group_capacity *); in __sdt_alloc()
1768 if (!sdd->sgc) in __sdt_alloc()
1769 return -ENOMEM; in __sdt_alloc()
1780 return -ENOMEM; in __sdt_alloc()
1782 *per_cpu_ptr(sdd->sd, j) = sd; in __sdt_alloc()
1787 return -ENOMEM; in __sdt_alloc()
1789 *per_cpu_ptr(sdd->sds, j) = sds; in __sdt_alloc()
1794 return -ENOMEM; in __sdt_alloc()
1796 sg->next = sg; in __sdt_alloc()
1798 *per_cpu_ptr(sdd->sg, j) = sg; in __sdt_alloc()
1803 return -ENOMEM; in __sdt_alloc()
1806 sgc->id = j; in __sdt_alloc()
1809 *per_cpu_ptr(sdd->sgc, j) = sgc; in __sdt_alloc()
1822 struct sd_data *sdd = &tl->data; in __sdt_free()
1827 if (sdd->sd) { in __sdt_free()
1828 sd = *per_cpu_ptr(sdd->sd, j); in __sdt_free()
1829 if (sd && (sd->flags & SD_OVERLAP)) in __sdt_free()
1830 free_sched_groups(sd->groups, 0); in __sdt_free()
1831 kfree(*per_cpu_ptr(sdd->sd, j)); in __sdt_free()
1834 if (sdd->sds) in __sdt_free()
1835 kfree(*per_cpu_ptr(sdd->sds, j)); in __sdt_free()
1836 if (sdd->sg) in __sdt_free()
1837 kfree(*per_cpu_ptr(sdd->sg, j)); in __sdt_free()
1838 if (sdd->sgc) in __sdt_free()
1839 kfree(*per_cpu_ptr(sdd->sgc, j)); in __sdt_free()
1841 free_percpu(sdd->sd); in __sdt_free()
1842 sdd->sd = NULL; in __sdt_free()
1843 free_percpu(sdd->sds); in __sdt_free()
1844 sdd->sds = NULL; in __sdt_free()
1845 free_percpu(sdd->sg); in __sdt_free()
1846 sdd->sg = NULL; in __sdt_free()
1847 free_percpu(sdd->sgc); in __sdt_free()
1848 sdd->sgc = NULL; in __sdt_free()
1859 sd->level = child->level + 1; in build_sched_domain()
1860 sched_domain_level_max = max(sched_domain_level_max, sd->level); in build_sched_domain()
1861 child->parent = sd; in build_sched_domain()
1868 child->name, sd->name); in build_sched_domain()
1884 * any two given CPUs at this (non-NUMA) topology level.
1892 if (tl->flags & SDTL_OVERLAP) in topology_span_sane()
1896 * Non-NUMA levels cannot partially overlap - they must be either in topology_span_sane()
1898 * breaking the sched_group lists - i.e. a later get_group() pass in topology_span_sane()
1910 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && in topology_span_sane()
1911 cpumask_intersects(tl->mask(cpu), tl->mask(i))) in topology_span_sane()
1956 for_each_cpu_and(j, tl->mask(i), cpu_map) { in asym_cpu_capacity_level()
1988 int i, ret = -ENOMEM; in build_sched_domains()
2020 if (tl->flags & SDTL_OVERLAP) in build_sched_domains()
2021 sd->flags |= SD_OVERLAP; in build_sched_domains()
2029 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { in build_sched_domains()
2030 sd->span_weight = cpumask_weight(sched_domain_span(sd)); in build_sched_domains()
2031 if (sd->flags & SD_OVERLAP) { in build_sched_domains()
2042 for (i = nr_cpumask_bits-1; i >= 0; i--) { in build_sched_domains()
2046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { in build_sched_domains()
2059 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) in build_sched_domains()
2060 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); in build_sched_domains()
2071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); in build_sched_domains()
2254 * its dl_bw->total_bw needs to be cleared. It in partition_sched_domains_locked()
2258 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; in partition_sched_domains_locked()
2263 /* No match - a current sched domain not in new doms_new[] */ in partition_sched_domains_locked()
2284 /* No match - add a new doms_new */ in partition_sched_domains_locked()
2295 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { in partition_sched_domains_locked()
2300 /* No match - add perf. domains for a new rd */ in partition_sched_domains_locked()