Lines Matching +full:system +full:- +full:cache +full:- +full:controller
13 (EL0 - EL3), with EL0 and EL1 having a secure and a non-secure
14 counterpart. EL2 is the hypervisor level and exists only in non-secure
33 ---------------------------
38 kernel will use for volatile data storage in the system. It performs
46 -------------------------
50 The device tree blob (dtb) must be placed on an 8-byte boundary and must
59 ------------------------------
71 ------------------------
75 The decompressed kernel image contains a 64-byte header as follows::
91 - As of v3.17, all fields are little endian unless stated otherwise.
93 - code0/code1 are responsible for branching to stext.
95 - when booting through EFI, code0/code1 are initially skipped.
100 - Prior to v3.17, the endianness of text_offset was not specified. In
102 endianness of the kernel. Where image_size is non-zero image_size is
103 little-endian and must be respected. Where image_size is zero,
106 - The flags field (introduced in v3.17) is a little-endian 64-bit field
111 Bit 1-2 Kernel Page size.
113 * 0 - Unspecified.
114 * 1 - 4K
115 * 2 - 16K
116 * 3 - 64K
126 Bits 4-63 Reserved.
129 - When image_size is zero, a bootloader should attempt to keep as much
135 address anywhere in usable system RAM and called there. The region
142 placed as close as possible to the start of system RAM.
155 - Quiesce all DMA capable devices so that memory does not get
159 - Primary CPU general-purpose register settings:
161 - x0 = physical address of device tree blob (dtb) in system RAM.
162 - x1 = 0 (reserved for future use)
163 - x2 = 0 (reserved for future use)
164 - x3 = 0 (reserved for future use)
166 - CPU mode
171 the virtualisation extensions) or non-secure EL1.
173 - Caches, MMUs
177 The instruction cache may be on or off, and must not hold any stale
181 cleaned to the PoC. In the presence of a system cache or other
183 cache maintenance by VA rather than set/way operations.
184 System caches which respect the architected cache maintenance by VA
186 System caches which do not respect architected cache maintenance by VA
189 - Architected timers
196 - Coherency
203 - System registers
205 All writable architected system registers at the exception level where
209 - SCR_EL3.FIQ must have the same value across all CPUs the kernel is
211 - The value of SCR_EL3.FIQ must be the same as the one present at boot
214 For systems with a GICv3 interrupt controller to be used in v3 mode:
215 - If EL3 is present:
217 - ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
218 - ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
219 - ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across
223 - If the kernel is entered at EL1:
225 - ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
226 - ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
228 - The DT or ACPI tables must describe a GICv3 interrupt controller.
230 For systems with a GICv3 interrupt controller to be used in
233 - If EL3 is present:
237 - If the kernel is entered at EL1:
241 - The DT or ACPI tables must describe a GICv2 interrupt controller.
245 - If EL3 is present:
247 - SCR_EL3.APK (bit 16) must be initialised to 0b1
248 - SCR_EL3.API (bit 17) must be initialised to 0b1
250 - If the kernel is entered at EL1:
252 - HCR_EL2.APK (bit 40) must be initialised to 0b1
253 - HCR_EL2.API (bit 41) must be initialised to 0b1
257 - If EL3 is present:
259 - CPTR_EL3.TAM (bit 30) must be initialised to 0b0
260 - CPTR_EL2.TAM (bit 30) must be initialised to 0b0
261 - AMCNTENSET0_EL0 must be initialised to 0b1111
262 - AMCNTENSET1_EL0 must be initialised to a platform specific value
266 - If the kernel is entered at EL1:
268 - AMCNTENSET0_EL0 must be initialised to 0b1111
269 - AMCNTENSET1_EL0 must be initialised to a platform specific value
274 timers, coherency and system registers apply to all CPUs. All CPUs must
280 - The primary CPU must jump directly to the first instruction of the
282 an 'enable-method' property for each cpu node. The supported
283 enable-methods are described below.
288 - CPUs with a "spin-table" enable-method must have a 'cpu-release-addr'
290 naturally-aligned 64-bit zero-initalised memory location.
294 device tree) polling their cpu-release-addr location, which must be
296 to reduce the overhead of the busy-loop and a sev will be issued by
298 cpu-release-addr returns a non-zero value, the CPU must jump to this
299 value. The value will be written as a single 64-bit little-endian
303 - CPUs with a "psci" enable method should remain outside of
308 DEN 0022A ("Power State Coordination Interface System Software on ARM
314 - Secondary CPU general-purpose register settings
316 - x0 = 0 (reserved for future use)
317 - x1 = 0 (reserved for future use)
318 - x2 = 0 (reserved for future use)
319 - x3 = 0 (reserved for future use)