Lines Matching +full:- +full:i

21 	int i, j, r, k, pad;  variable
22 int nn = rs->nn;
23 int nroots = rs->nroots;
24 int fcr = rs->fcr;
25 int prim = rs->prim;
26 int iprim = rs->iprim;
27 uint16_t *alpha_to = rs->alpha_to;
28 uint16_t *index_of = rs->index_of;
38 uint16_t msk = (uint16_t) rs->nn;
41 pad = nn - nroots - len;
48 /* form the syndromes; i.e., evaluate data(x) at roots of
50 for (i = 0; i < nroots; i++)
51 syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
54 for (i = 0; i < nroots; i++) {
55 if (syn[i] == 0) {
56 syn[i] = (((uint16_t) data[j]) ^
59 syn[i] = ((((uint16_t) data[j]) ^
61 alpha_to[rs_modnn(rs, index_of[syn[i]] +
62 (fcr + i) * prim)];
68 for (i = 0; i < nroots; i++) {
69 if (syn[i] == 0) {
70 syn[i] = ((uint16_t) par[j]) & msk;
72 syn[i] = (((uint16_t) par[j]) & msk) ^
73 alpha_to[rs_modnn(rs, index_of[syn[i]] +
74 (fcr+i)*prim)];
82 for (i = 0; i < nroots; i++) {
83 syn_error |= s[i];
84 s[i] = index_of[s[i]];
102 prim * (nn - 1 - eras_pos[0]))];
103 for (i = 1; i < no_eras; i++) {
104 u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
105 for (j = i + 1; j > 0; j--) {
106 tmp = index_of[lambda[j - 1]];
115 for (i = 0; i < nroots + 1; i++)
116 b[i] = index_of[lambda[i]];
119 * Begin Berlekamp-Massey algorithm to determine error+erasure
125 /* Compute discrepancy at the r-th step in poly-form */
127 for (i = 0; i < r; i++) {
128 if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
131 index_of[lambda[i]] +
132 s[r - i - 1])];
137 /* 2 lines below: B(x) <-- x*B(x) */
141 /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
143 for (i = 0; i < nroots; i++) {
144 if (b[i] != nn) {
145 t[i + 1] = lambda[i + 1] ^
147 b[i])];
149 t[i + 1] = lambda[i + 1];
151 if (2 * el <= r + no_eras - 1) {
152 el = r + no_eras - el;
154 * 2 lines below: B(x) <-- inv(discr_r) *
157 for (i = 0; i <= nroots; i++) {
158 b[i] = (lambda[i] == 0) ? nn :
159 rs_modnn(rs, index_of[lambda[i]]
160 - discr_r + nn);
163 /* 2 lines below: B(x) <-- x*B(x) */
173 for (i = 0; i < nroots + 1; i++) {
174 lambda[i] = index_of[lambda[i]];
175 if (lambda[i] != nn)
176 deg_lambda = i;
181 for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
183 for (j = deg_lambda; j > 0; j--) {
191 /* store root (index-form) and error location number */
192 root[count] = i;
205 count = -EBADMSG;
212 deg_omega = deg_lambda - 1;
213 for (i = 0; i <= deg_omega; i++) {
215 for (j = i; j >= 0; j--) {
216 if ((s[i - j] != nn) && (lambda[j] != nn))
218 alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
220 omega[i] = index_of[tmp];
224 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
225 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
227 for (j = count - 1; j >= 0; j--) {
229 for (i = deg_omega; i >= 0; i--) {
230 if (omega[i] != nn)
231 num1 ^= alpha_to[rs_modnn(rs, omega[i] +
232 i * root[j])];
234 num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
237 /* lambda[i+1] for i even is the formal derivative
238 * lambda_pr of lambda[i] */
239 for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
240 if (lambda[i + 1] != nn) {
241 den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
242 i * root[j])];
249 nn - index_of[den])];
258 if (data && (loc[j] < (nn - nroots)))
259 data[loc[j] - pad] ^= cor;
266 for (i = 0; i < count; i++)
267 eras_pos[i] = loc[i] - pad;